
 A Quick-Start Guide to Lambdas
and Streams

Introducing
Java 8

Raoul-Gabriel Urma

Additional
Resources
4 Easy Ways to Learn More and Stay Current

Programming Newsletter
Get programming related news and content delivered weekly to your inbox.
oreilly.com/programming/newsletter

Free Webcast Series
Learn about popular programming topics from experts live, online.
webcasts.oreilly.com

O’Reilly Radar
Read more insight and analysis about emerging technologies.
radar.oreilly.com

Conferences
Immerse yourself in learning at an upcoming O’Reilly conference.
conferences.oreilly.com

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15305

http://oreilly.com/programming/newsletter
http://webcasts.oreilly.com
http://radar.oreilly.com
http://conferences.oreilly.com

Raoul-Gabriel Urma

Introducing Java 8

978-1-491-93434-0

[LSI]

Introducing Java 8
by Raoul-Gabriel Urma

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Brian Foster
Production Editor: Colleen Lobner
Copyeditor: Lindsy Gamble

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

August 2015: First Edition

Revision History for the First Edition
2015-08-20: First Release
2015-09-02: Second Release

Cover photo: Tiger_2898 by Ken_from_MD via flickr, flipped and converted to
grayscale. http://www.flickr.com/photos/4675041963_97cd139e83_o.jpg.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introducing Java 8
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://www.flickr.com/photos/4675041963_97cd139e83_o.jpg

Table of Contents

1. Java 8: Why Should You Care?. 1
Code Readability 1
Multicore 3
A Quick Tour of Java 8 Features 3

2. Adopting Lambda Expressions. 11
Why Lambda Expressions? 11
Lambda Expressions Defined 13
Lambda Expression Syntax 13
Where to Use Lambda Expressions 14
Method References 15
Putting It All Together 16
Testing with Lambda Expressions 18
Summary 18

3. Adopting Streams. 19
The Need for Streams 19
What Is a Stream? 20
Stream Operations 21
Filtering 21
Matching 22
Finding 22
Mapping 23
Reducing 23
Collectors 24
Putting It All Together 24
Parallel Streams 26
Summary 27

v

CHAPTER 1

Java 8: Why Should You Care?

Java has changed! The new version of Java, released in March 2014,
called Java 8, introduced features that will change how you program
on a day-to-day basis. But don’t worry—this brief guide will walk
you through the essentials so you can get started.

This first chapter gives an overview of Java 8’s main additions. The
next two chapters focus on Java 8’s main features: lambda expressions
and streams.

There were two motivations that drove the changes in Java 8:

• Better code readability
• Simpler support for multicore

Code Readability
Java can be quite verbose, which results in reduced readability.
In other words, it requires a lot of code to express a simple concept.
Here’s an example: say you need to sort a list of invoices in decreas‐
ing order by amount. Prior to Java 8, you’d write code that looks
like this:

Collections.sort(invoices, new Comparator<Invoice>() {
 public int compare(Invoice inv1, Invoice inv2) {
 return Double.compare(inv2.getAmount(), inv1.getAmount());
 }
});

1

In this kind of coding, you need to worry about a lot of small details
in how to do the sorting. In other words, it’s difficult to express a
simple solution to the problem statement. You need to create a
Comparator object to define how to compare two invoices. To do
that, you need to provide an implementation for the compare
method. To read this code, you have to spend more time figuring
out the implementation details instead of focusing on the actual
problem statement.

In Java 8, you can refactor this code as follows:

invoices.sort(comparingDouble(Invoice::getAmount).reversed());

Now, the problem statement is clearly readable. (Don’t worry about
the new syntax; I’ll cover that shortly.) That’s exactly why you should
care about Java 8—it brings new language features and API updates
that let you write more concise and readable code.

Moreover, Java 8 introduces a new API called Streams API that lets
you write readable code to process data. The Streams API supports
several built-in operations to process data in a simpler way. For
example, in the context of a business operation, you may wish to
produce an end-of-day report that filters and aggregates invoices
from various departments. The good news is that with the Streams
API you do not need to worry about how to implement the
query itself.

This approach is similar to what you’re used to with SQL. In fact, in
SQL you can specify a query without worrying about its internal
implementation. For example, suppose you want to find all the IDs
of invoices that have an amount greater than 1,000:

SELECT id FROM invoices WHERE amount > 1000

This style of writing what a query does is often referred to as
declarative-style programming. Here’s how you would solve the
problem in parallel using the Streams API:

List<Integer> ids = invoices.stream()
 .filter(inv -> inv.getAmount() > 1_000)
 .map(Invoice::getId)
 .collect(Collectors.toList());

Don’t worry about the details of this code for now; you’ll see
the Streams API in depth in Chapter 3. For now, think of a Stream
as a new abstraction for expressing data processing queries in a
readable way.

2 | Java 8: Why Should You Care?

Multicore
The second big change in Java 8 was necessitated by multicore pro‐
cessors. In the past, your computer would have only one processing
unit. To run an application faster usually meant increasing the per‐
formance of the processing unit. Unfortunately, the clock speeds of
processing units are no longer getting any faster. Today, the vast
majority of computers and mobile devices have multiple processing
units (called cores) working in parallel.

Applications should utilize the different processing units for
enhanced performance. Java applications typically achieve this by
using threads. Unfortunately, working with threads tends to be diffi‐
cult and error-prone and is often reserved for experts.

The Streams API in Java 8 lets you simply run a data processing
query in parallel. For example, to run the preceding code in parallel
you just need to use parallelStream() instead of stream():

List<Integer> ids = invoices.parallelStream()
 .filter(inv -> inv.getAmount() > 1_000)
 .map(Invoice::getId)
 .collect(Collectors.toList());

In Chapter 3, I will discuss the details and best practices when using
parallel streams.

A Quick Tour of Java 8 Features
This section provides an overview of Java 8’s primary new features—
with code examples—to give you an idea of what’s available. The
next two chapters will focus on Java 8’s two most important features:
lambda expressions and streams.

Lambda Expressions
Lambda expressions let you pass around a piece of code in a concise
way. For example, say you need to get a Thread to perform a task.
You could do so by creating a Runnable object, which you then pass
as an argument to the Thread:

Runnable runnable = new Runnable() {
 @Override
 public void run() {
 System.out.println("Hi");
 }

Multicore | 3

};

new Thread(runnable).start();

Using lambda expressions, on the other hand, you can rewrite the
previous code in a much more readable way:

new Thread(() -> System.out.println("Hi")).start();

You’ll learn about lambda expressions in much greater detail in
Chapter 2.

Method References
Method references make up a new feature that goes hand in hand
with lambda expressions. They let you select an existing method
defined in a class and pass it around. For example, say you need to
compare a list of strings by ignoring case. Currently, you would
write code that looks like this:

List<String> strs = Arrays.asList("C", "a", "A", "b");
Collections.sort(strs, new Comparator<String>() {
 @Override
 public int compare(String s1, String s2) {
 return s1.compareToIgnoreCase(s2);
 }
});

The code just shown is extremely verbose. After all, all you need is
the method compareToIgnoreCase. Using method references, you
can explicitly say that the comparison should be performed using
the method compareToIgnoreCase defined in the String class:

Collections.sort(strs, String::compareToIgnoreCase);

The code String::compareToIgnoreCase is a method reference. It
uses the special syntax ::. (More detail on method references is in
the next chapter.)

Streams
Nearly every Java application creates and processes collections.
They’re fundamental to many programming tasks since they let you
group and process data. However, working with collections can be
quite verbose and difficult to parallelize. The following code illus‐
trates how verbose processing collections can be. It processes a list
of invoices to find the IDs of training-related invoices sorted by the
invoice’s amount:

4 | Java 8: Why Should You Care?

List<Invoice> trainingInvoices = new ArrayList<>();
for(Invoice inv: invoices) {
 if(inv.getTitle().contains("Training")) {
 trainingInvoices.add(inv);
 }
}

Collections.sort(trainingInvoices, new Comparator() {
 public int compare(Invoice inv1, Invoice inv2) {
 return inv2.getAmount().compareTo(inv1.getAmount());
 }
});

List<Integer> invoiceIds = new ArrayList<>();
for(Invoice inv: trainingInvoices) {
 invoiceIds.add(inv.getId());
}

Java 8 introduces a new abstraction called Stream that lets you pro‐
cess data in a declarative way. In Java 8, you can refactor the preced‐
ing code using streams, like so:

List<Integer> invoiceIds =
 invoices.stream()
 .filter(inv -> inv.getTitle().contains("Training"))
 .sorted(comparingDouble(Invoice::getAmount)
 .reversed())
 .map(Invoice::getId)
 .collect(Collectors.toList());

In addition, you can explicitly execute a stream in parallel by using
the method parallelStream instead of stream from a collection
source. (Don’t worry about the details of this code for now. You’ll
learn much more about the Streams API in Chapter 3.)

Enhanced Interfaces
Interfaces in Java 8 can now declare methods with implementation
code thanks to two improvements. First, Java 8 introduces default
methods, which let you declare methods with implementation code
inside an interface. They were introduced as a mechanism to evolve
the Java API in a backward-compatible way. For example, you’ll see
that in Java 8 the List interface now supports a sort method that is
defined as follows:

default void sort(Comparator<? super E> c) {
 Collections.sort(this, c);
}

A Quick Tour of Java 8 Features | 5

Default methods can also serve as a multiple inheritance mechanism
for behavior. In fact, prior to Java 8, a class could already implement
multiple interfaces. Now, you can inherit default methods from mul‐
tiple different interfaces. Note that Java 8 has explicit rules to pre‐
vent inheritance issues common in C++ (such as the diamond prob‐
lem).

Second, interfaces can now also have static methods. It’s a common
pattern to define both an interface and a companion class defining
static methods for working with instances of the interface. For
example, Java has the Collection interface and the Collections
class, which defines utility static methods. Such utility static meth‐
ods can now live within the interface. For instance, the Stream inter‐
face in Java 8 declares a static method like this:

public static <T> Stream<T> of(T... values) {
 return Arrays.stream(values);
}

New Date and Time API
Java 8 introduces a brand new Date and Time API that fixes many
problems typical of the old Date and Calendar classes. The new
Date and Time API was designed around two main principles:

Domain-driven design
The new Date and Time API precisely models various notions
of date and time by introducing new classes to represent them.
For example, you can use the class Period to represent a value
like “2 months and 3 days” and ZonedDateTime to represent a
date–time with a time zone. Each class provides domain-
specific methods that adopt a fluent style. Consequently, you
can chain methods to write more readable code. For example,
the following code shows how to create a new LocalDateTime
object and add 2 hours and 30 minutes:

LocatedDateTime coffeeBreak = LocalDateTime.now()
 .plusHours(2)
 .plusMinutes(30);

Immutability
One of the problems with Date and Calendar is that they
weren’t thread-safe. In addition, developers using dates as part
of their API can accidentally update values unexpectedly. To
prevent these potential bugs, the classes in the new Date and

6 | Java 8: Why Should You Care?

Time API are all immutable. In other words, you can’t change
an object’s state in the new Date and Time API. Instead, you use
a method to return a new object with an updated value.

The following code exemplifies various methods available in the
new Date and Time API:

ZoneId london = ZoneId.of("Europe/London");
LocalDate july4 = LocalDate.of(2014, Month.JULY, 4);
LocalTime early = LocalTime.parse("08:45");
ZonedDateTime flightDeparture = ZonedDateTime.of(july4, early,
london);
System.out.println(flightDeparture);

LocalTime from = LocalTime.from(flightDeparture);
System.out.println(from);

ZonedDateTime touchDown
 = ZonedDateTime.of(july4,
 LocalTime.of (11, 35),
 ZoneId.of("Europe/Stockholm"));
Duration flightLength = Duration.between(flightDeparture, touch
Down);
System.out.println(flightLength);

// How long have I been in continental Europe?
ZonedDateTime now = ZonedDateTime.now();
Duration timeHere = Duration.between(touchDown, now);
System.out.println(timeHere);

This code will produce an output similar to this:

2015-07-04T08:45+01:00[Europe/London]
08:45
PT1H50M
PT269H46M55.736S

CompletableFuture
Java 8 introduces a new way to think about asynchronous program‐
ming with a new class, CompletableFuture. It’s an improvement on
the old Future class, with operations inspired by similar design
choices made in the new Streams API (i.e., declarative flavor and
ability to chain methods fluently). In other words, you can declara‐
tively process and compose multiple asynchronous tasks.

A Quick Tour of Java 8 Features | 7

Here’s an example that concurrently queries two blocking tasks: a
price finder service along with an exchange rate calculator. Once the
results from the two services are available, you can combine their
results to calculate and print the price in GBP:

findBestPrice("iPhone6")
 .thenCombine(lookupExchangeRate(Currency.GBP),
 this::exchange)
 .thenAccept(localAmount -> System.out.printf("It will cost
you %f GBP\n", localAmount));

private CompletableFuture<Price> findBestPrice(String product
Name) {
 return CompletableFuture.supplyAsync(() -> priceFinder.find
BestPrice(productName));
}

private CompletableFuture<Double> lookupExchangeRate(Currency
localCurrency) {
 return CompletableFuture.supplyAsync(() ->
 exchangeService.lookupExchangeRate(Currency.USD, localCur
rency));
}

Optional
Java 8 introduces a new class called Optional. Inspired by functional
programming languages, it was introduced to allow better modeling
in your codebase when a value may be present or absent. Think of it
as a single-value container, in that it either contains a value or is
empty. Optional has been available in alternative collections frame‐
works (like Guava), but is now available as part of the Java API. The
other benefit of Optional is that it can protect you against
NullPointerExceptions. In fact, Optional defines methods to force
you to explicitly check the absence or presence of a value. Take the
following code as an example:

getEventWithId(10).getLocation().getCity();

If getEventWithId(10) returns null, then the code throws a
NullPointerException. If getLocation() returns null, then it also
throws a NullPointerException. In other words, if any of the meth‐
ods return null, a NullPointerException could be thrown. You can
avoid this by adopting defensive checks, like the following:

public String getCityForEvent(int id) {
 Event event = getEventWithId(id);

8 | Java 8: Why Should You Care?

 if(event != null) {
 Location location = event.getLocation();
 if(location != null) {
 return location.getCity();
 }
 }
 return "TBC";
}

In this code, an event may have an associated location. However, a
location always has an associated city. Unfortunately, it’s often easy
to forget to check for a null value. In addition, the code is now
more verbose and harder to follow. Using Optional, you can refac‐
tor the code to be more concise and explicit, like so:

public String getCityForEvent(int id) {
 Optional.ofNullable(getEventWithId(id))
 .flatMap(this::getLocation)
 .map(this::getCity)
 .orElse("TBC");
}

At any point, if a method returns an empty Optional, you get the
default value "TBC".

A Quick Tour of Java 8 Features | 9

CHAPTER 2

Adopting Lambda Expressions

In this chapter, you’ll learn how to adopt lambda expressions, the
flagship feature of Java 8. First, you’ll learn about a pattern called
behavior parameterization, which lets you write code that can cope
with requirement changes. Then, you’ll see how lambda expressions
let you use this pattern in a more concise way than what was possi‐
ble before Java 8. Next, you’ll learn precisely where and how to use
lambda expressions. You’ll also learn about method references,
another Java 8 feature that lets you write code that is more succinct
and descriptive. You’ll then bring all this new knowledge together
into a practical refactoring example. Finally, you’ll also learn how to
test using lambda expressions and method references.

Why Lambda Expressions?
The motivation for introducing lambda expressions into Java is
related to a pattern called behavior parameterization. This pattern
lets you cope with requirement changes by letting you write more
flexible code. Prior to Java 8, this pattern was very verbose. Lambda
expressions fix that by letting you utilize the behavior parameteriza‐
tion pattern in a concise way. Here’s an example: say you need to
find invoices greater than a certain amount. You could create a
method findInvoicesGreaterThanAmount:

List<Invoice> findInvoicesGreaterThanAmount(List<Invoice> invoi
ces, double amount) {
 List<Invoice> result = new ArrayList<>();
 for(Invoice inv: invoices) {
 if(inv.getAmount() > amount) {

11

 result.add(inv);
 }
 }
 return result;
}

Using this method is simple enough. However, what if you need to
also find invoices smaller than a certain amount? Or worse, what if
you need to find invoices from a given customer and also of a
certain amount? Or, what if you need to query many different prop‐
erties on the invoice? You need a way to parameterize the behavior
of filter with some form of condition. Let’s represent this condi‐
tion by defining InvoicePredicate interface and refactoring the
method to make use of it:

interface InvoicePredicate {
 boolean test(invoice inv);
}

List<Invoice> findInvoices(List<Invoice> invoices, InvoicePredi
cate p) {
 List<Invoice> result = new ArrayList<>();
 for(Invoice inv: invoices) {
 if(p.test(inv)) {
 result.add(inv);
 }
 }
 return result;
}

With this useful code, you can cope with any requirement changes
involving any property of an Invoice object. You just need to create
different InvoicePredicate objects and pass them to the
findInvoices method. In other words, you have parameterized the
behavior of findInvoices. Unfortunately, using this new method
introduces additional verbosity, as shown here:

List<Invoice> expensiveInvoicesFromOracle
 = findInvoices(invoices, new InvoicePredicate() {
 public test(Invoice inv) {
 return inv.getAmount() > 10_000
 && inv.getCustomer() == Customer.ORACLE;
 }
 });

In other words, you have more flexibility but less readability. Ideally,
you want both flexibility and conciseness, and that’s where lambda

12 | Adopting Lambda Expressions

expressions come in. Using this feature, you can refactor the preced‐
ing code as follows:

List<Invoice> expensiveInvoicesFromOracle
 = findInvoices(invoices, inv ->
 inv.getAmount() > 10_000
 && inv.getCustomer() ==
 Customer.ORACLE);

Lambda Expressions Defined
Now that you know why you need need lambda expressions, it’s
time to learn more precisely what they are. In the simplest terms, a
lambda expression is an anonymous function that can be passed
around. Let’s take a look at this definition in greater detail:

Anonymous
A lambda expression is anonymous because it does not have an
explicit name as a method normally would. It’s sort of like an
anonymous class in that it does not have a declared name.

Function
A lambda is like a method in that it has a list of parameters, a
body, a return type, and a possible list of exceptions that can be
thrown. However, unlike a method, it’s not declared as part of a
particular class.

Passed around
A lambda expression can be passed as an argument to a
method, stored in a variable, and also returned as a result.

Lambda Expression Syntax
Before you can write your own lambda expressions, you need to
know the syntax. You have seen a couple of lambda expressions in
this guide already:

Runnable r = () -> System.out.println("Hi");
FileFilter isXml = (File f) -> f.getName().endsWith(".xml");

These two lambda expressions have three parts:

• A list of parameters, e.g. (File f)
• An arrow composed of the two characters - and >

Lambda Expressions Defined | 13

• A body, e.g. f.getName().endsWith(".xml")

There are two forms of lambda expressions. You use the first form
when the body of the lambda expression is a single expression:

(parameters) -> expression

You use the second form when the body of the lambda expression
contains one or multiple statements. Note that you have to use curly
braces surrounding the body of the lambda expression:

(parameters) -> { statements;}

Generally, one can omit the type declarations from the lambda
parameters if they can be inferred. In addition, one can omit the
parentheses if there is a single parameter.

Where to Use Lambda Expressions
Now that you know how to write lambda expressions, the next ques‐
tion to consider is how and where to use them. In a nutshell, you
can use a lambda expression in the context of a functional interface.
A functional interface is one with a single abstract method. Take, for
example, the two lambda expressions from the preceding code:

Runnable r = () -> System.out.println("Hi");
FileFilter isXml = (File f) -> f.getName().endsWith(".xml");

Runnable is a functional interface because it defines a single abstract
method called run. It turns out FileFilter is also a functional
interface because it defines a single abstract method, called accept:

@FunctionalInterface
public interface Runnable {
 void run();
}

@FunctionalInterface
public interface FileFilter {
 boolean accept(File pathname);
}

The important point here is that lambda expressions let you create
an instance of a functional interface. The body of the lambda
expression provides the implementation for the single abstract
method of the functional interface. As a result, the following uses of
Runnable via anonymous classes and lambda expressions will pro‐
duce the same output:

14 | Adopting Lambda Expressions

Runnable r1 = new Runnable() {
 public void run() {
 System.out.println("Hi!");
 }
};
r1.run();

Runnable r2 = () -> System.out.println("Hi!");
r2.run();

You’ll often see the annotation @FunctionalInterface
on interfaces. It’s similar to using the @Override anno‐
tation to indicate that a method is overridden. Here,
the @FunctionalInterface annotation is used for doc‐
umentation to indicate that the interface is intended to
be a functional interface. The compiler will also report
an error if the interface annotated doesn’t match the
definition of a functional interface.

You’ll find several new functional interfaces such as Function<T, R>
and Supplier<T> in the package java.util.function, which you
can use for various forms of lambda expressions.

Method References
Method references let you reuse existing method definitions and
pass them around just like lambda expressions. They are useful in
certain cases to write code that can feel more natural and readable
compared to lambda expressions. For example, you can find hidden
files using a lambda expression as follows:

File[] hiddenFiles = mainDirectory.listFiles(f -> f.isHid
den());

Using a method reference, you can directly refer to the method isH
idden using the double colon syntax (::).

File[] hiddenFiles = mainDirectory.listFiles(File::isHidden);

The most simple way to think of a method reference is as a short‐
hand notation for lambda expressions calling for a specific method.
There are four main kinds of method references:

• A method reference to a static method:
Function<String, Integer> converter = Integer::parseInt;
Integer number = converter.apply("10");

Method References | 15

• A method reference to an instance method. Specifically, you’re
referring to a method of an object that will be supplied as the
first parameter of the lambda:

Function<Invoice, Integer> invoiceToId = Invoice::getId;

• A method reference to an instance method of an existing object:
Consumer<Object> print = System.out::println;

Specifically, this kind of method reference is very useful when
you want to refer to a private helper method and inject it into
another method:

File[] hidden = mainDirectory.listFiles(this::isXML);

private boolean isXML(File f) {
 return f.getName.endsWith(".xml");
}

• A constructor reference:
Supplier<List<String>> listOfString = List::new;

Putting It All Together
At the start of this chapter, you saw this verbose example of Java
code for sorting invoices:

Collections.sort(invoices, new Comparator<Invoice>() {
 public int compare(Invoice inv1, Invoice inv2) {
 return Double.compare(inv2.getAmount(), inv1.getAmount());
 }
});

Now you’ll see exactly how to use the Java 8 features you’ve learned
so far to refactor this code so it’s more readable and concise.

First, notice that Comparator is a functional interface because it only
declares a single abstract method called compare, which takes two
objects of the same type and returns an integer. This is an ideal sit‐
uation for a lambda expression, like this one:

Collections.sort(invoices,
 (Invoice inv1, Invoice inv2) -> {
 return Double.compare(inv2.getAmount(),
inv1.getAmount());
});

16 | Adopting Lambda Expressions

Since the body of the lambda expression is simply returning the
value of an expression, you can use the more concise form of
lambda expression:

Collections.sort(invoices,
 (Invoice inv1, Invoice inv2)
 -> Double.compare(inv2.getAmount(),
inv1.getAmount()));

In Java 8, the List interface supports the sort method, so you can
use that instead of Collections.sort:

invoices.sort((Invoice inv1, Invoice inv2)
 -> Double.compare(inv2.getAmount(),
inv1.getAmount()));

Next, Java 8 introduces a static helper, Comparator.comparing,
which takes as argument a lambda to extract a comparable key. It
then generates a Comparator object for you. You can use it as
follows:

Comparator<Invoice> byAmount
 = Comparator.comparing((Invoice inv) -> inv.getAmount());

invoices.sort(byAmount);

You may notice that the more concise method reference
Invoice::getAmount can simply replace the lambda (Invoice inv)
-> inv.getAmount():

Comparator<Invoice> byAmount
 = Comparator.comparing(Invoice::getAmount);
invoices.sort(byAmount);

Since the method getAmount returns a primitive double, you can
use Comparator.comparingDouble, which is a primitive specialized
version of Comparator.comparing, to avoid unnecessary boxing:

Comparator<Invoice> byAmount
 = Comparator.comparingDouble(Invoice::getAmount);
invoices.sort(byAmount);

Finally, let’s tidy up the code and use an import static and also get
rid of the local variable holding the Comparator object to produce a
solution that reads like the problem statement:

import static java.util.Comparator.comparingDouble;
invoices.sort(comparingDouble(Invoice::getAmount));

Putting It All Together | 17

Testing with Lambda Expressions
You may be concerned with how lambda expressions are going to
affect testing. After all, lambda expressions introduce behaviors that
need to be tested. When deciding how to test code that contains
lambda expressions, consider the following two options:

• If the lambda expression is small, test the behavior of the sur‐
rounding code that uses it.

• If the lambda expression is reasonably complex, extract it into
a separate method reference that you can inject and test in isola‐
tion.

Summary
Here are the key concepts from this chapter:

• A lambda expression can be understood as a kind of anony‐
mous function.

• Lambda expressions and the behavior parameterization pattern
let you write code that is both flexible and concise.

• A functional interface is an interface that declares a single
abstract method.

• Lambda expressions can only be used in the context of a func‐
tional interface.

• Method references can be a more natural alternative to lambda
expressions when you need to reuse an existing method and
pass it around.

• In the context of testing, extract large lambda expressions
into separate methods that you can then inject using method
references.

18 | Adopting Lambda Expressions

CHAPTER 3

Adopting Streams

In this chapter, you’ll learn how to adopt the Streams API. First,
you’ll gain an understanding behind the motivation for the Streams
API, and then you’ll learn exactly what a stream is and what it’s used
for. Next, you’ll learn about various operations and data processing
patterns using the Streams API, and about Collectors, which let you
write more sophisticated queries. You’ll then look at a practical
refactoring example. Finally, you’ll learn about parallel streams.

The Need for Streams
The Collections API is one of the most important parts of the Java
API. Nearly every Java application makes and processes collections.
But despite its importance, the processing of collections in Java is
still unsatisfactory in many aspects.

For one reason, many alternative programming languages or libra‐
ries let you express typical data processing patterns in a declarative
way. Think of SQL, where you can select from a table, filter values
given a condition, and also group elements in some form. There’s no
need to detail how to implement the query—the database figures it
out for you. The benefit is that your code is easier to understand.
Unfortunately, in Java you don’t get this. You have to implement
the low-level details of a data processing query using control flow
constructs.

Second, how can you process really large collections efficiently? Ide‐
ally, to speed up the processing, you want to leverage multicore

19

architectures. However, writing parallel code is hard and error-
prone.

The Streams API addresses both these issues. It introduces a new
abstraction called Stream that lets you process data in a declarative
way. Furthermore, streams can leverage multicore architectures
without you having to deal with low-level constructs such as
threads, locks, conditional variables, and volatiles, etc.

For example, say you need to filter a list of invoices to find those
related to a specific customer, sort them by amount of the invoice,
and then extract their IDs. Using the Streams API, you can express
this simply with the following query:

List<Integer> ids
 = invoices.stream()
 .filter(inv ->
 inv.getCustomer() == Customer.ORACLE)
 .sorted(comparingDouble(Invoice::getAmount))
 .map(Invoice::getId)
 .collect(Collectors.toList());

You’ll see how this code works in more detail later in this chapter.

What Is a Stream?
So what is a stream? Informally, you can think of it as a “fancy itera‐
tor” that supports database-like operations. Technically, it’s a
sequence of elements from a source that supports aggregate opera‐
tions. Here’s a breakdown of the more formal definition:

Sequence of elements
A stream provides an interface to a sequenced set of values of a
specific element type. However, streams don’t actually store ele‐
ments; they’re computed on demand.

Source
Streams consume from a data-providing source such as collec‐
tions, arrays, or I/O resources.

Aggregate operations
Streams support database-like operations and common opera‐
tions from functional programming languages, such as filter,
map, reduce, findFirst, allMatch, sorted, and so on.

20 | Adopting Streams

Furthermore, stream operations have two additional fundamental
characteristics that differentiate them from collections:

Pipelining
Many stream operations return a stream themselves. This allows
operations to be chained to form a larger pipeline. This style
enables certain optimizations such as laziness, short-circuiting,
and loop fusion.

Internal iteration
In contrast to collections, which are iterated explicitly (external
iteration), stream operations do the iteration behind the scenes
for you.

Stream Operations
The Stream interface in java.util.stream.Stream defines many
operations, which can be grouped into two categories:

• Operations such as filter, sorted, and map, which can be con‐
nected together to form a pipeline

• Operations such as collect, findFirst, and allMatch, which
terminate the pipeline and return a result

Stream operations that can be connected are called intermediate
operations. They can be connected together because their return
type is a Stream. Intermediate operations are “lazy” and can often be
optimized. Operations that terminate a stream pipeline are called
terminal operations. They produce a result from a pipeline such as a
List, Integer, or even void (i.e., any nonstream type).

Let’s take a tour of some of the operations available on streams.
Refer to the java.util.stream.Stream interface for the complete
list.

Filtering
There are several operations that can be used to filter elements from
a stream:

filter

Takes a Predicate object as an argument and returns a stream
including all elements that match the predicate

Stream Operations | 21

distinct

Returns a stream with unique elements (according to the imple‐
mentation of equals for a stream element)

limit

Returns a stream that is no longer than a certain size

skip

Returns a stream with the first n number of elements discarded

List<Invoice> expensiveInvoices
 = invoices.stream()
 .filter(inv -> inv.getAmount() > 10_000)
 .limit(5)
 .collect(Collectors.toList());

Matching
A common data processing pattern is determining whether some
elements match a given property. You can use the anyMatch,
allMatch, and noneMatch operations to help you do this. They all
take a predicate as an argument and return a boolean as the result.
For example, you can use allMatch to check that all elements in a
stream of invoices have a value higher than 1,000:

boolean expensive =
 invoices.stream()
 .allMatch(inv -> inv.getAmount() > 1_000);

Finding
In addition, the Stream interface provides the operations findFirst
and findAny for retrieving arbitrary elements from a stream. They
can be used in conjunction with other stream operations such as
filter. Both findFirst and findAny return an Optional object
(which we discussed in Chapter 1):

Optional<Invoice> =
 invoices.stream()
 .filter(inv ->
 inv.getCustomer() == Customer.ORACLE)
 .findAny();

22 | Adopting Streams

Mapping
Streams support the method map, which takes a Function object as
an argument to turn the elements of a stream into another type.
The function is applied to each element, “mapping” it into a new ele‐
ment.

For example, you might want to use it to extract information from
each element of a stream. This code returns a list of the IDs from a
list of invoices:

List<Integer> ids
 = invoices.stream()
 .map(Invoice::getId)
 .collect(Collectors.toList());

Reducing
Another common pattern is that of combining elements from a
source to provide a single value. For example, “calculate the invoice
with the highest amount” or “calculate the sum of all invoices’
amounts.” This is possible using the reduce operation on streams,
which repeatedly applies an operation to each element until a result
is produced.

As an example of a reduce pattern, it helps to first look at how you
could calculate the sum of a list using a for loop:

int sum = 0;
for (int x : numbers) {
 sum += x;
}

Each element of the list of numbers is combined iteratively using the
addition operator to produce a result, essentially reducing the list of
numbers into one number. There are two parameters in this code:
the initial value of the sum variable—in this case 0—and the opera‐
tion for combining all the elements of the list, in this case the
addition operation.

Using the reduce method on streams, you can sum all the elements
of a stream as shown here:

int sum = numbers.stream().reduce(0, (a, b) -> a + b);

Mapping | 23

The reduce method takes two arguments:

• An initial value; here, 0.
• A BinaryOperator<T> to combine two elements and produce a

new value. The reduce method essentially abstracts the pattern
of repeated application. Other queries such as “calculate the
product” or “calculate the maximum” become special-use cases
of the reduce method, like so:

int product = numbers.stream().reduce(1, (a, b) -> a * b);
int max = numbers.stream().reduce(Integer.MIN_VALUE,
 Integer::max);

Collectors
The operations you have seen so far were either returning another
stream (i.e., intermediate operations) or returning a value, such as a
boolean, an int, or an Optional object (i.e., terminal operations).
By contrast, the collect method is a terminal operation. It lets you
accumulate the elements of a stream into a summary result.

The argument passed to collect is an object of type
java.util.stream.Collector. A Collector object essentially
describes a recipe for accumulating the elements of a stream into a
final result. The factory method Collectors.toList() used earlier
returns a Collector object describing how to accumulate a stream
into a List. However, there are many similar built-in collectors
available, which you can see in the class Collectors. For example,
you can group invoices by customers using Collectors.groupingBy
as shown here:

Map<Customer, List<Invoice>> customerToInvoices
 = invoices.stream().collect(Collectors.group
ingBy(Invoice::getCustomer));

Putting It All Together
Here’s a step-by-step example so you can practice refactoring old-
style Java code to use the Streams API. The following code filters
invoices that are from a specific customer and related to training,
sorts the resulting invoices by amount, and finally extracts the first
five IDs:

24 | Adopting Streams

List<Invoice> oracleAndTrainingInvoices = new ArrayList<>();
List<Integer> ids = new ArrayList<>();
List<Integer> firstFiveIds = new ArrayList<>();

for(Invoice inv: invoices) {
 if(inv.getCustomer() == Customer.ORACLE) {
 if(inv.getTitle().contains("Training")) {
 oracleAndTrainingInvoices.add(inv);
 }
 }
}

Collections.sort(oracleAndTrainingInvoices,
 new Comparator<Invoice>() {
 @Override
 public int compare(Invoice inv1, Invoice inv2) {
 return Double.compare(inv1.getAmount(), inv2.getA
mount());
 }
});

for(Invoice inv: oracleAndTrainingInvoices) {
 ids.add(inv.getId());
}

for(int i = 0; i < 5; i++) {
 firstFiveIds.add(ids.get(i));
}

Now you’ll refactor this code step-by-step using the Streams API.
First, you may notice that you are using an intermediate container to
store invoices that have the customer Customer.ORACLE and
"Training" in the title. This is the use case for using the filter
operation:

Stream<Invoice> oracleAndTrainingInvoices
 = invoices.stream()
 .filter(inv ->
 inv.getCustomer() == Customer.ORACLE)
 .filter(inv ->
 inv.getTitle().contains("Training"));

Next, you need to sort the invoices by their amount. You can use the
new utility method Comparator.comparing together with the
method sorted, as shown in the previous chapter:

Stream<Invoice> sortedInvoices
 = oracleAndTrainingInvoices.sorted(comparingDou
ble(Invoice::getAmount));

Putting It All Together | 25

Next, you need to extract the IDs. This is a pattern for the map oper‐
ation:

Stream<Integer> ids
 = sortedInvoices.map(Invoice::getId);

Finally, you’re only interested in the first five invoices. You can use
the operation limit to stop after those five. Once you tidy up the
code and use the collect operation, the final code is as follows:

List<Integer> firstFiveIds
 = invoices.stream()
 .filter(inv ->
 inv.getCustomer() == Customer.ORACLE)
 .filter(inv ->
 inv.getTitle().contains("Training"))
 .sorted(comparingDouble(Invoice::getAmount))
 .map(Invoice::getId)
 .limit(5)
 .collect(Collectors.toList());

You can observe that in the old-style Java code, each local variable
was stored once and used once by the next stage. Using the Streams
API, these throwaway local variables are eliminated.

Parallel Streams
The Streams API supports easy data parallelism. In other words, you
can explicitly ask for a stream pipeline to be performed in parallel
without thinking about low-level implementation details. Behind
the scenes, the Streams API will use the Fork/Join framework, which
will leverage the multiple cores of your machine.

All you need to do is exchange stream() with parallelStream().
For example, here’s how to filter expensive invoices in parallel:

List<Invoice> expensiveInvoices
 = invoices.parallelStream()
 .filter(inv -> inv.getAmount() > 10_000)
 .collect(Collectors.toList());

Alternatively, you can convert an existing Stream into a parallel
Stream by using the parallel method:

Stream<Invoice> expensiveInvoices
 = invoices.stream()
 .filter(inv -> inv.getAmount() > 10_000);
List<Invoice> result

26 | Adopting Streams

 = expensiveInvoices.parallel()
 .collect(Collectors.toList());

Nonetheless, it’s not always a good idea to use parallel streams.
There are several factors you need to take into consideration to
manage performance benefits:

Splittability
The internal implementation of parallel streams relies on how
simple it is to split the source data structure so different threads
can work on different parts. Data structures such as arrays are
easily splittable, but other data structures such as LinkedList or
files offer poor splittability.

Cost per element
The more expensive it is to calculate an element of the stream,
the more benefit from parallelism you can get.

Boxing
It is preferable to use primitives instead of objects if possible, as
they have lower memory footprint and better cache locality.

Size
A larger number of data elements can produce better results
because the parallel setup cost will be amortized over the pro‐
cessing of many elements, and the parallel speedup will out‐
weigh the setup cost. This also depends on the processing cost
per element, just mentioned.

Number of cores
Typically, the more cores available, the more parallelism you
can get.

In practice, I advise that you benchmark and profile your code if
you want a performance improvement. Java Microbenchmark
Harness (JMH) is a popular framework maintained by Oracle that
can help you with that. Without care, you could get poorer perfor‐
mance by simply switching to parallel streams.

Summary
Here are the most important takeaways from this chapter:

• A stream is a sequence of elements from a source that supports
aggregate operations.

Summary | 27

• There are two types of stream operations: intermediate and ter‐
minal operations.

• Intermediate operations can be connected together to form a
pipeline.

• Intermediate operations include filter, map, distinct, and
sorted.

• Terminal operations process a stream pipeline to return a result.
• Terminal operations include allMatch, collect, and forEach.
• Collectors are recipes to accumulate the element of a stream

into a summary result, including containers such as List and
Map.

• A stream pipeline can be executed in parallel.
• There are various factors to consider when using parallel

streams for enhanced performance, including splittability, cost
per element, packing, data size, and number of cores available.

28 | Adopting Streams

Acknowledgments
I would like to thank my parents for their continuous support. In
addition, I would like to thank Alan Mycroft and Mario Fusco, with
whom I wrote the book Java 8 in Action. Finally, I would also like to
thank Richard Warburton, Stuart Marks, Trisha Gee, and the
O’Reilly staff, who provided valuable reviews and suggestions.

About the Author
Raoul-Gabriel Urma is co-author of the bestselling book Java 8 in
Action (Manning). He has worked as a software engineer for Oracle’s
Java Platform Group, as well as for Google’s Python team, eBay, and
Goldman Sachs. An instructor and frequent conference speaker, he’s
currently completing a PhD in Computer Science at the University
of Cambridge. He is also co-founder of Cambridge Coding Acad‐
emy and a Fellow of the Royal Society of Arts. In addition, Raoul-
Gabriel holds a MEng in Computer Science from Imperial College
London and graduated with first-class honors, having won several
prizes for technical innovation.

You can find out more about Raoul-Gabriel’s projects on his website
and on Twitter @raoulUK.

http://www.urma.com

	Cover
	Copyright
	Table of Contents
	Chapter 1. Java 8: Why Should You Care?
	Code Readability
	Multicore
	A Quick Tour of Java 8 Features
	Lambda Expressions
	Method References
	Streams
	Enhanced Interfaces
	New Date and Time API
	CompletableFuture
	Optional

	Chapter 2. Adopting Lambda Expressions
	Why Lambda Expressions?
	Lambda Expressions Defined
	Lambda Expression Syntax
	Where to Use Lambda Expressions
	Method References
	Putting It All Together
	Testing with Lambda Expressions
	Summary

	Chapter 3. Adopting Streams
	The Need for Streams
	What Is a Stream?
	Stream Operations
	Filtering
	Matching
	Finding
	Mapping
	Reducing
	Collectors
	Putting It All Together
	Parallel Streams
	Summary

