
UNCA CSCI 431
Exam 1 Spring 2019

Open textbook section
10 April 2019

This version contains some answers.

This is the open textbook part of the exam. Communication with anyone other than the
instructor is not allowed during the exam. Furthermore, calculators, cell phones, and
any other electronic or communication devices may not be used during this
exam. Anyone needing a break during the exam must leave their exam with the
instructor. Cell phones or computers may not be used during breaks.

This exam must be turned in before 1:45 PM.

Name:________________________________

Give short definitions for the following terms:

Problem 1 (20 points) Possible Program Problems
Suppose a file contains the following alleged C code. Indicate the lexical (scanner),
syntax (parser), static semantic, and possibly dynamic semantic errors in the following
long example. It might be a good idea to explain your reasoning.

It seems like everything is legal C. Of course, your program might crash.

char g(int) ; Legal C prototype
If illegal, would syntax error

 int f(X int) { Static semantic error – int is a type

int temp ;

Because X wasn’t legally declared, all statements using X would
result in a static semantic error.
However, if X were an int, all would be OK in C and Java.
float Y = X++ + 431 ;
int z = (int)Y + X ;
if (z<0) {

Undefined reference error could occur in link if g missing

Compiler would not “know” this. Some kind of semantic
temp = X + g(X) ;

return temp + 7;
} Syntax error – There is no closing }

Page 1 of 4

Exam 1 UNCA CSCI 235

Problem 2 (4 points)
What exactly is enclosed by an enclosure?
Relevant parts of the execution environment needed to run the enclosure. This
would be the “external” variables used within the enclosure.

For example, in the Python lambda expression:
lambda i, j -> i * x * y + j * y

The values of x and y would need to be enclosed.

Does a Java method reference, such as c in the example below:
Consumer<String> c = System.out::println ;

really require an enclosure?
c must be implemented by a class implementing a functional interface.
This would certainly need a reference to System.out.println, but is that an
addition to the “execution environment” since it’s out is a static field of a static
class?

Problem 3 (6 points)
Write, in both Java and Python, lambda expressions implementing a function (in
Python) and functional interface (in Java) that receives an argument X and returns
X+431. (Yes, they are very similar.)

Java: x -> x + 431
Python: lambda x : x + 431

Problem 4 (12 points)
Translate the following C expressions into both prefix and postfix notation:

sqrt(x) + y * (a + c) % z

In C, Java and Python: % and / have the same precedence and are
left to right associative. This means the expression is evaluated as

sqrt(x) + (y * (a + c)) % z
Try out 2 * 3 % 5 in gdb, jshell, and python. The result is 1.

Prefix: + sqrt x * y % + a c z
Postfix: x sqrt y a c + * z % +

Prefix and postfix should never have parentheses.
That’s what makes them both cool and useful.

Page 2 of 4

Exam 1 UNCA CSCI 235

Problem 5 (10 points)
Consider the following psuedocode, adopted from page 171 of the textbook.
 procedure P(A, B: real)

 X: real
 procedure Q(B, C: real)
 Y: real
 … body of Q
 procedure R(A, C: real)
 Z: real
 … body of R
 … body of P

What procedures can be called and what variables (including procedure
arguments) can be accessed from the body of Q?

All procedures – P, Q and R
All variables in Q – B, C and Y
No variables in R
A and X in P

What procedures can be called and what variables (including procedure
arguments) can be accessed from the body of R?

All procedures – P, Q and R
All variables in R – A, C and Z
No variables in Q
B and X in P

Problem 6 (10 points)
Continue with the Problem 5 psuedocode. Suppose that P calls R which calls Q which
calls P which calls R as shown in the preceding problem. Draw an abstract picture of the
stack containing all five active stack frames which also illustrates the static and
dynamic links.

Drawing a diagram in an editor is too much for me, so I’m doing this horizontally.

The stack with dynamic links goes like this. That is each call points to the callee
P ««« R ««« Q ««« P ««« R
We having no idea what called the first P, so me admit it’s dynamic link.

The static link is a bit messier. With only one level of “enclosure” at most one static link
is needed for each procedure. Notice that both Q and the first R, point to the first Q.

P <+= R +=Q P ««« R
 ‘=====´

Page 3 of 4

Exam 1 UNCA CSCI 235

Problem 7 (12 points)
Start with the following C structure:

struct CS {
int I;
char C[5] ;
float D ;
short S ;

}
Given the usual x86_64 alignment what would be the offsets of the four fields from the
beginning of the structure? (If you are not sure what the “usual” alignment, state your
assumptions.)

I at offset 0
C at offset 4
D at offset 12
S at offset 16
Total length is 18

Problem 8 (12 points)
Continuing with the structure of Problem 7, suppose X is a two-dimensional array of
struct CS declared as follows:

struct CS X[431][235] ;
If α is the address of the base of the array, what is the address of the start of element
A[i][j] of the array? Show your fancy math!

Size of struct must be at least 20 to allow int I to have appropriate alignment
Many C compilers will align at 8-byte boundaries, which would be 24
Address of A[i][j] would be α + I * 235 * 20 + j * 20

Also what is the address of A[i][j].C[3] ?

Offset of C[3} with the structure would be 7
Address of A[i][j].C[3] would be α + I * 235 * 20 + j * 20 + 7

Page 4 of 4

