Name:
This is the open notes section of Quiz 2. This section must be turned in by 11:15 am.

## Problem 1 (6 points)

Suppose a one-dimensional integer array in Pascal is declared with the dimensions 2. . 10, that is, the index of the first element is 2 and the index of the last element is 10 . If the first element, A[2], of the array is stored at memory location $0 \times \mathrm{xc} 0000080$, give a formula for the location of A [ i ] in terms of the Pascal variable i. Assume that each integer is stored in four bytes.

## Problem 2 (6 points)

It's been argued that object-oriented programming eliminates the need for type constructors such as the C union and Pascal variant record. How could this be?

## Problem 3 (6 points)

What sort of programming errors can be eliminated by the use of run-time garbage collection?

Problem 4 (12 points)
The following diagram represents the scope of five procedures, many of which are nested in Pascal, a statically scoped language.


## Problem 4A:

Which of these five procedures may be called by D?

## Problem 4B:

Which of these five procedures may be called by E ?

## Problem 4C:

Suppose A calls B which (recursively) calls B which calls C. Draw the stack with the four activation records and their dynamic and static links as its exists when procedure C is being executed.

Give an example of a program that prints "UNCA" when executed with dynamic scoping but prints "WCU" when executed with static scoping. You may use the pseudo-code of your choice.

## Problem 6 (8 points)

Write a Perl subroutine that when passed three variables returns the sum of the two largest. For example, if passed the values 5,15 , and 10 , your subroutine should return $25(15+10)$.

Here's a useful example in Java for local variables $x, y$, and $z$.
if ( $x+y>x+z \& \& x+y>y+z$ )
return $x+y$;
if ( $x+z>y+z$ )
return $x+z$;
return $\mathrm{y}+\mathrm{z}$;

