UNCA CSCI 235

Final Exam Fall 2018

11 December 2018 - 3:00 pm to 5:30 pm
This is a closed book and closed notes exam. Communication with anyone other than the instructor is not allowed during the exam. Furthermore, calculators, cell phones, and any other electronic or communication devices may not be used during this exam. Anyone needing a break during the exam must leave their exam with the instructor. Cell phones or computers may not be used during breaks.

Name: \qquad

Problem 1 (10 points) C expressions

In the left column, there are fifteen tricky and not-so tricky C expressions. Write their values in the right column. Express your answers as simple base 10 expressions, such as 235 or -235 . You may assume that all of these numbers are stored in 16-bit two's complement representation, the usual short.

0123	
$0 x E B$	
$14 \& \& 14$	
$42 \& 35$	
$42 \gg 3$	
42 \| 35	
$42 \ll 3$	
42 ^ 35	
$\sim 42+1$	
$3 * 4 / 5$	
$(3 * 4) / 5$	
$1<(2<3)$	
$17 \& \sim 17$	
$17 \& \&-17$	
$(17==17) * 17$	

Problem 2 (4 points) Decimal to two's complement conversion

Convert the following four signed decimal numbers into five-bit two's
complement representation. Some of these numbers may be outside the range of representation for five-bit two's complement numbers. Write "out-of-range" for those cases.

15	32
-15	-32

Problem 3 (3 points) Q4. 4 to decimal conversion

Convert the following two Q4.4 two's complement numbers (four fixed and four fractional bits) into conventional decimal numbers.

Problem 4 (3 points) Decimal to Q4.4 conversion

Convert the following two signed decimal numbers into Q4.4 two's complement numbers (four fixed and four fractional bits). If you can't express the number exactly, give the nearest Q4.4 representation.

3.3	-1.414

Problem 5 (6 points) Adding numbers with flags

Add the following pairs of six-bit numbers. Based on the result of this addition, set the four x86-64 status bits: CF (carry), OF (overflow), SF (sign) and ZF (zero).

$\begin{array}{r} 111011 \\ +\quad 000101 \\ \hline \end{array}$	$\begin{array}{r} 011100 \\ +\quad 000100 \\ \hline \end{array}$
CF__, $\mathrm{OF}_{\text {_ }}$, $\mathrm{SF}_{\text {__ }}, \mathrm{ZF}$	CF_, $\mathrm{OF}_{\ldots}, \mathrm{SF}, \ldots, \mathrm{ZF}$
$\begin{array}{r} 100000 \\ +\quad 100000 \\ \hline \end{array}$	$\begin{array}{r} 010110 \\ +\quad 000110 \\ \hline \end{array}$
CF_, OF_, SF__ ${ }_{\text {IF }}$	CF_, OF_, SF__ ${ }_{\text {IF }}$

Problem 6 (2 points) Range

What is the range of numbers that can be stored in 16-bit twos-complement numbers? (The short of Java is a 16 -bit twos-complement number.)

Problem 7 (2 points) Range

What is the range of numbers that can be stored in 16 -bit unsigned numbers? (The char of Java is a 16 -bit unsigned number.)

Problem 8 (6 points) Formatted printing

Suppose that the int variable C has the value 170 (in decimal). The left column in the table below has a printf statement. The right column has the desired output for that printf within a six character field. Your task is to fill in the underlined part (the stuff after the \%). You must use a single "conversation specifier" (the thing starting with a \%) in your format string. No "ordinary characters" are allowed. This means the following are not allowed because they contain ordinary characters.

> printf("000160", C) ; // contains only ordinary characters printf(" \%3d", C) ; // starts with three ordinary characters
R

