
UNCA CSCI 235
Final Exam Spring 2019 answers

6 May 2019 – 3:00 pm to 5:30 pm

This is a closed book and closed notes exam. Communication with anyone
other than the instructor is not allowed during the exam. Furthermore,
calculators, cell phones, and any other electronic or communication
devices may not be used during this exam. Anyone needing a break
during the exam must leave their exam with the instructor. Cell phones or
computers may not be used during breaks.

Name:________________________________

Problem 1 (10 points) C expressions
In the left column, there are fifteen tricky and not-so tricky C expressions.
Write their values in the right column. Express your answers as simple base
10 expressions, such as 235 or -235. You may assume that all of these
numbers are stored in 16-bit two’s complement representation, the usual
short.

0353 235

0xC8 200

11 && 0 0

11 || 0 1

20 & 11 0

20 | 11 31

20 ^ 11 31

20 / 11 1

20 + ~11 8

22 << 2 88

22 >> 2 5

3 * 4 / 5 2

(3 * 4) / 5 2

3 * (4 / 5) 0

(23 * 33) && (0 * 14) 0

Page 1 of 12

Problem 2 (4 points) Decimal to two’s complement conversion
Convert the following four signed decimal numbers into six-bit two’s complement
representation. Some of these numbers may be outside the range of
representation for six-bit two's complement numbers. Write “out-of-range” for
those cases.

1

000001

32

out-of-range
-1

111111

-32

100000

Problem 3 (3 points) Q4.4 to decimal conversion
Convert the following two Q4.4 two’s complement numbers (four fixed and four
fractional bits) into conventional decimal numbers.

10101010

-5.375

01010101

5.3125
Problem 4 (3 points) Decimal to Q4.4 conversion
Convert the following two signed decimal numbers into Q4.4 two’s complement
numbers (four fixed and four fractional bits). If you can’t express the number
exactly, give the nearest Q4.4 representation.

2.35

00100110

-1.25

11101100

Page 2 of 12

Problem 5 (6 points) Adding numbers with flags
Add the following pairs of six-bit numbers. Based on the result of this addition, set
the four x86-64 status bits: CF (carry), OF (overflow), SF (sign) and ZF (zero).

 111010
+ 000110
 000000

CF 1, OF 0, SF 0, ZF 1

 011010
+ 000110
 100000

CF 0, OF 1, SF 1, ZF 0
 101010
+ 101010
 010100

CF 1, OF 1, SF 0, ZF 0

 110110
+ 110110
 101100

CF 1, OF 0, SF 1, ZF 0

Problem 6 (2 points) Range 1
What is the range of numbers that can be stored in 16-bit twos-complement
numbers? (The int of Arduino C++ is a 16-bit twos-complement number.)

-32768 to 32767

Problem 7 (2 points) Range 2
What is the range of numbers that can be stored in 8-bit unsigned numbers? (The
unsigned char of Arduino C++ is an 8-bit unsigned number.)

0 to 255

Page 3 of 12

Problem 8 (6 points) Formatted printing
Suppose that the int variable C has the value 140 (in decimal). The left column in
the table below has a printf statement. The right column has the desired output
for that printf within a six character field. Your task is to fill in the underlined
part (the stuff after the %). You must use a single “conversation specifier”
(the thing starting with a %) in your format string. No “ordinary
characters” are allowed. This means the following are not allowed because
they contain ordinary characters.

printf("000140", C) ; // contains only ordinary characters
printf(" %3d", C) ; // starts with three ordinary characters

printf("%6X",C) ; 8 C

printf("%6d",C) ; 1 4 0

printf("%6x",C) ; 8 c

printf("%6o",C) ; 2 1 4

printf("%+6d",C) ; + 1 4 0

printf("%06d",C) ; 0 0 0 1 4 0

Page 4 of 12

Problem 9: goto programming (8 points)
In the style of a recent lab, implement the C function shown below using only two
control structures:

goto label ;
if (expression) goto label ;

This specifically means that you can’t use the for, while, switch, break,
continue, or even the statement block delimiters { and }. You can use the if, but
only when the conditional expression is immediately followed by a goto
statement. Also, do not use the ?: operator of C (and Java) to simulate an if-
then-else.

 int big_letter_count(const char *s) {
 int n = 0 ;
 while (*s != 0) {
 if ('A' <= *s && *s <= 'Z') {
 ++n ;
 }
 ++s ;
 }
 return n ;
 }

int big_letter_count(char *s) {
 int n = 0 ;
 goto loopTest ;

loopStart:

 if (!('A' <= *s && *s <= 'Z')) goto noIncN ;

 ++n ;

noIncN:

 ++s ;

loopTest:

 if (*s != 0) goto loopStart ;

 return n ;
}

Page 5 of 12

Problem 10 (6 points) Strings in C
A Java or Python programmer might be puzzled by the absence of a length()
method or a len() function for determining the length of a character string.

Rewrite the big_letter_count program to use a C for loop while using s as a
character array indexed by a variable i. That is, fill in the blanks to make your
program look more like a Java program. However, you still can’t use length! That
is not in C.
 int big_letter_count(const char s[]) {
 int n = 0 ;

 for(int i = 0 ; *s != ' \0 ' ; ++i) {

 if ('A' <= s[i] && s[i] <= 'Z') {
 ++n ;
 }
 }
 return n ;

Problem 11 (6 points) CSCI arithmetic
Perform the following operations and express the results as they should be for
CSCI 235 and other geeky environments. You must use your powers of 2!

 32 * 128 Gi = 25 * 27 * 230 = 242 =
4 Ti

 4 Mi / 8 = 22 * 220 / 23 = 219 =
512 ki

 log2(8 Gi)=log2(23 * 230)=log2(233)=
33

Page 6 of 12

Problem 12 (13 points): C Programming
Write a program that reads from standard input a sequence of pairs of county
names (15 characters or less) and their populations and prints a nicely formatted
list of the input pairs, in the order they were read, along the average population of
the counties. So, if the input to your program is something like:
 Buncombe 257607 Haywood
 61084 Transylvania 33956
Your program output should resemble the following:
 Buncombe 257607
 Haywood 61084
 Transylvania 33956
 AVERAGE: 117549

#include <stdio.h>
int main(int argc, char *argv[]) {
 int totalPeoples = 0 ;

 int countCounties = 0 ;

 char county[16] ;

 int peoples ;

 while (scanf("%15s %d", county, &peoples) == 2) {

 totalPeoples = totalPeoples + peoples ;

 ++countCounties ;

 printf("%-20s %8d", county, peoples) ;

 }

 int average = totalPeoples / countCounties ;

 printf("AVERAGE: %8d", average) ;

}

Page 7 of 12

Problem 13 (5 points) Boolean expression to truth table
Fill in the truth table on the right below so that it corresponds to the following Java
(and C) expression:

X = (!A && (B || C)) || (A && B &&C)
If you prefer the computer engineering style, you can think of the equation as

X = A’ (B + C) + A B C

A B C X
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Problem 14 (5 points) Truth table to Boolean expression
The truth table below specifies a Boolean function with three inputs, A, B, and C
and one output X.

A B C X
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Write a Boolean expression corresponding to the function specified in the table.
You do not need to write an “efficient” expression; however, ridiculously complex
expressions will not be given full credit. The phrase “ridiculously complex
expressions” means “expressions with require more than five minutes of
instructor time to decode”.

A’ B’ C + A’ B C’ + A B’ C’ + A B C’
A’ B’ C + A B’ C’ + B C’ simplified

Page 8 of 12

Problem 15 (8 points) Circuit to Boolean expression and truth table
A gate-level circuit is shown below with three inputs on the left and a single
output on the right.

First, write the Boolean expression corresponding to this circuit. (Don’t worry
about the “x1”. It indicates that the connection is for a single bit.)

(A B + B + C’)’

ECE 209/MATH 251: (A B + B + C’)’ → (B + C’)’ → B’ C

Next, complete the following truth table so that it corresponds to this digital logic
circuit.

A B C X
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Page 9 of 12

Problem 16: Definitions (7 points)
Give short definitions of the following concepts, functions, hacks, programs, types,
variables, etc., you have seen in the labs and homework of this course, Feel free
to skip one: I will grade the best seven of eight definitions.

330 Ω

bit banging

breadboard

CircuitPython

current limiting resistor

nano

os.walk() and/or nftw()

Tinkercad circuits

Page 10 of 12

Problem 17 (8 points)
In this question, you are to fill in boxes representing the following C integer or
pointer variables to show their values after each of seven sections of C code are
executed. You should consider all the sections as being independently
executed after the following declaration and initialization statements:

 int V[3] = {201, 235, 335} ;
 int *p = NULL ;
 int *q = NULL ;

As you know, null in Java is similar to NULL in C. Draw the value NULL with a little
X. Don’t ever just leave the pointer variable boxes empty.

 p = V ;
 q = V+1 ;
 *p = 200 ;
 *q = 300 ;

p &V[0] V[0] 200

V[1] 300

q &V[1] V[2] 335

 q = &V[1] ;
 p = q++ ;
 *p = *q ;

p &V[1] V[0] 201

V[1] 335

q &V[2] V[2] 335

 p = &V[0] ;
 q = &V[2] ;
 *p = q - p ;

p &V[0] V[0] 2

V[1] 235

q &V[2] V[2] 335

 p = &V[0] ;
 q = &V[1] ;
 *(++q) = ++(*p);

p &V[0] V[0] 202

V[1] 235

q &V[2] V[2] 202

Page 11 of 12

CSCI 235
Handy Table of Numbers

Powers of Two
20 1 210 1024

21 2 211 2048

22 4 212 4096 210 1 Ki

23 8 213 8192 220 1 Mi

24 16 214 16384 230 1 Gi

25 32 215 32768

26 64 216 65536

27 128 217 131072

28 256 218 262144

29 512 219 524288

Hex table
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Page 12 of 12

