Final Exam CSCI 255 Spring 2002
 Open Book Section

13 May 2002

Name:
This exam has a closed book and an open book section. Until you have turned in the closed book section, you are not allowed to use any resource materials: books, notes, or calculators.

Be sure to show your work in order to get full credit for the problem. When possible place your answers in the provided space. There are 5 questions for a total of 56 points on the three-page open book section of the quiz.

This exam is to be turned in by $8: 30 \mathrm{pm}$.

Problem 1 (8 points)

Compute the following bit-wise logical operations on 4-bit binary numbers.

0101 AND (0111 OR 1111)	(NOT 0011) OR (NOT 0101)	

Problem 2 (8 points)

Implement the truth table shown below as circuit. The "inputs" to the truth table are A, B, and C . The output is Z . You may implement the circuit using any of the various digital logic structures given in chapter 3 of the textbook.

A	B	C	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Problem 3 (20 points)

Write five separate $\mathrm{LC} / 2$ assembly programs to compute the following five C statements:

$\mathrm{R} 2=2 \star \mathrm{R} 3+20 ;$if $(\mathrm{R} 3>\mathrm{R} 2)$			
R3 = R2 \& R3 ;			
$\begin{gathered} \text { while }(R 2>0) \\ R 2=R 2-5 ; \end{gathered}$			
R5 = H[R2] + H[R3] ;		$\begin{aligned} & \hline \text { ST } \\ & \text { LEA } \end{aligned}$	aveR0
	SaveR0 H	LD .BLKW .BLKW	$\begin{aligned} & \text { avero } \\ & 1 \\ & 100 \end{aligned}$

Problem 4 (12 points)

Assuming that B255 is a function that receives a single integer as an argument and then returns a single integer and, consequently, has the following prototype:
int B255 (int n) ;
implement the following rather silly C function in $\mathrm{LC} / 2$ assembler:

```
int A255(int n) {
    return B255(n) + 3 ;
}
```


Problem 5 (8 points)

Once upon a time, some graduating seniors were required to translate the following C function into LC-2 assembler:

```
int Fin255(int *Px, int y) \{
    int r ;
    \(r=* P x\);
    *Px = r + Y ;
    return r ;
\}
```

One student proposed the following solution:

```
STR R7,R6,#1 ; Store return address
LDR R0,R6,#3 ; RO <- Px
LDR R2,R0,#0 ; R2 = *Px
STR R2,R1,#0 ; r(R1) = *Px
LDR R3,R6,#4 ; R3 <- y
ADD R4,R1,R3 ; R4 = R1(R which equals *Px) + R3(y)
STR R4,R2,#0 ; R2(*Px) = R4 (r+y)
STR R1,R6,#0 ; return r
    LDR R7,R6,#1 ; load return address
    LDR R6,R6,#2 ; restore dynamic link
```

There's at least one bug in this program. Fix the program by correcting it bugs.

