
 

 

Quiz 2 Solution CSCI 255 Spring 2001 
9 April, 2001 

 
Name: _____________________ 
This is a closed book exam.  Use of calculators is also not allowed.  Be sure to show your 
work in order to get full credit for the problem.  When possible place your answers in the 
provided boxes.  There are 9 questions for a total of 150 points on this quiz. 
 
Problem 1 (64 points): 3:15-3:47 
In this problem you are asked to write eight independent sections of LC-2 assembly code 
to set registers R0 or R1 or LC-2 memory locations based on constants, the present 
values of R3 and R4, or LC-2 memory locations.  You may use registers R6 or R7 as 
“scratch” registers but should not modify any other registers.  You must assume that your 
code will be located somewhere between memory locations x3000 and x30FF.  You 
may use .fill’s when needed to initial memory locations.  You should assume that 
these .fill’s would also be stored in memory locations x3000 to x30FF. 
 
In these subproblems, the code to implement is given in the psuedo-C notation used in 
class lectures.  Rn will be used as a reference to LC-2 register n.  M[n] will be used as a 
reference to LC-2 memory location n. 
 

There are many possible right answers.  These are probably the shortest. 
 
R0 ← 5 * R3 ; ADD R0,R3,R3

ADD R0,R0,R0
ADD R0,R0,R3

R0 ← R3 – R4 ; NOT R0,R4
ADD R0,R0,#1
ADD R0,R0,R3

R0 ← R3 & R4 ; AND R0,R3,R4

if (R3 == 15)
R0 ← R4 ;

else
R0 ← R4 + 1 ;

ADD R0,R4,#0
ADD R6,R3,#-15
BRz DONE
ADD R0,R0,#1

DONE …

R0 ← R4 ;
while (R0 < 107)

R0 ← R0 + R0 ;

LD 6,M107
ADD R0,R4,#0
BR MDLOOP

BGLOOP ADD R0,R0,R0
MDLOOP ADD R7,R6,R0

BRn BGLOOP
…

M107 .FILL #-107



 

 

 
M[x3100] ← M[x3100] + 5 ; LD R6,x3010

ADD R6,R6,#5
ST R6,x3010

M[x4100] ← M[x4100] + 5 ; LDI R6,PTR
ADD R6,R6,#5
STI R6,PTR
…

PTR .FILL x3010

R0 ← R3 + 1 ;
R1 ← R4 + ’1’ ;

ADD R0,R3,#1
LD R6,ASC1
ADD R1,R4,R6
…

ASC1 .FILL X31

 
Problem 2 (16 points): 3:47-3:55 
Translate into LC-2 machine language (binary) program the LC-2 assembly language 
program shown below: 
 

A fairly common problem was starting the first 
instruction (LD) at x3001 rather than x3000. 

.ORIG x3000
LD R1,MX
LDI R2,MX
LEA R3,MX
LDR R4,R1,#1
HALT

MX .FILL 0x3006
MY .FILL 0x3007
MZ .FILL 0x3008

.END 

0010001000000101
1010010000000101
1110011000000101
0110100001000001
1111000000100101
0011000000000110
0011000000000111
0011000000001000

 
  
Problem 3 (12 points): 3:55-4:01 
What are the values of registers R1 to R4 after the LC-2 assembly language program in 
Problem 2 is executed? 

R1 = x3006
R2 = x3007
R3 = x3005
R4 = x3008 

If you (incorrectly) assumed that MX was located at 
x3006, then R1, R2, and R3 would be set to x3006 and 

R4 would be set to x3007.  



 

 

Problem 4 (8 points): 4:01-4:05 
What Linux command would you use to assemble the LC-2 assembly program 
lab9.asm?  Give not only the name of the command, but the arguments you use with it. 

lc2asm lab9.asm lab9
 
Problem 5 (10 points): 4:05-4:10 
Write some LC-2 assembly code to write the contents of register 5 to the CRT using the 
CRT data and status registers? 
 

OUTLOOP LDI R6, ACRTSR
BRzp OUTLOOP
STI R5, ACRTDR
……

ACRTSR .FILL xF3FC
ACRTDR .FILL xF3FF

 
Problem 6 (8 points): 4:10-4:14 
Write some LC-2 assembly code to write the contents of register 5 to the CRT using a  
LC-2 trap routine?  
  

ADD R0, R5, #0
OUT

  
Problem 7 (12 points): 4:14-4:20 
The VAX computer has an instruction called BIC (Bit Clear) that performs the logical 
operation α β′.  Write a LC-2 subroutine called BIC in assembly language that performs 
this operation on registers R0 and R1, that is, the subroutine performs the operation: 

R0 ← R0 & ~R1 ;
 

BIC NOT R1, R1
AND R0, R0, R1
NOT R1, R1 ; restore R1
RET

 
Problem 8 (8 points): 4:20-4:24 
Show the complete LC-2 instruction needed to call the BIC subroutine of Problem 7.  
You may assume that both the calling and called subroutine are on the same page. 

JSR BIC
  
Problem 9 (10 points): 4:24-4:30 
Translate the following two LC-2 binary instructions into LC-2 assembly code. 
 

0001011011111110 ADD R3, R3, #-2
0101011011000111 AND R3, R3, R7

 


	Problem 4 (8 points):	4:01-4:05
	Problem 5 (10 points):	4:05-4:10
	
	
	
	OUTLOOP	LDI		R6, ACRTSR
	ADD		R0, R5, #0
	OUT
	BIC		NOT		R1, R1




	Problem 8 (8 points):	4:20-4:24
	
	
	
	JSR		BIC

	0001011011111110
	0101011011000111




