Quiz 1 CSCI 255 Spring 2001 Solution
 26 February, 2001

Name: \qquad
This is a closed book exam. Use of calculators is also not allowed. Be sure to show your work in order to get full credit for the problem. When possible place your answers in the provided boxes.

Problem 1 (8 points):
3:15-3:21
Convert the following two numbers from decimal notation into eight-bit twoscomplement notation.

-25	17
11100111	00010001

Problem 2 (8 points):
Convert the following two numbers from eight-bit twos-complement notation into decimal notation.

00010001	11111000
17	-8

Problem 3 (4 points):
3:27-3:30
Express the following decimal numbers in base 7 .

Problem 4 (12 points):
3:30-3:39
Add the following two pair of eight-bit twos-complement numbers. Which, if any, of the additions results in an overflow?

10011110	11111100
+10101000	+10101000
01000110	10100100
overflow occurs	no overflow

Problem 5 (8 points):

Compute the following bit-wise logical operations on four-bit binary numbers.

NOT (1010) AND 0011	NOT (1010 OR 0011)	
0101 AND 0011		
NOT 1011		
0001		

Problem 6 (8 points):
Complete the following truth tables for the two given Boolean equations:

X	y	$(x+y)^{\prime}+y$
0	0	1
0	1	1
1	0	0
1	1	1

x	y	$\left(x+x^{\prime}\right) y$
0	0	0
0	1	1
1	0	0
1	1	1

Problem 7 (8 points):
Translate the following truth table into a Boolean equation.
$x^{\prime} y z^{\prime}+x^{\prime} y z+x y^{\prime} z^{\prime}$

x	y	z	out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Problem 8 (8 points):
3:57-4:03
Assume Z is a C integer variable. Write a C statement that will set bits 8 and 9 of Z to 1 and clear bits 4 and 5 to 0 .

$$
Z=(Z \mid 0 \times 300) \& \sim 0 \times 30 ;
$$

Problem 9 (8 points):
Convert the following 16-bit binary numbers to hexadecimal numbers.

1010000001111111	0000110010011011
A07F	0C9B

Fill in the truth table on the right to reflect the output of the circuit on the left.

x	y	z	Out
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Problem 11 (20 points):
4:15-4:30
How have the following five concepts or standards been used in CSCI 255:
ASCII
Standard code for mapping letters into binary
Combinational circuit
A circuit where the present output always depends solely on that present input.
Even a wire or a one-gate circuit can be combinational.

IEEE floating point format
Standard binary representation of "real" numbers expressed in scientific notation

Multiplexer
A circuit that receives 2^{m} data inputs and m selector inputs and produces a single selected data output.

P-type transistor
Used to build inverters
Conducts when its gate is low

