

Final Exam CSCI 255 Spring 2001 Solution
7 May, 2001

Name: _____________________
This is a closed book exam. Use of calculators is also not allowed. Be sure to show your work
in order to get full credit for the problem. When possible place your answers in the provided
boxes. There are 11 questions for a total of 200 points on this quiz.

This exam is to be turned in by 5:45 pm.

Problem 1 (10 points):
Convert the following numbers from eight-bit twos-complement notation into decimal notation.

00001111

15

11110000

-16

Problem 2 (10 points):
Fill in the truth table on the right to reflect the output of the circuit on the left.

x y z Out
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Problem 3 (10 points):
Complete the following truth table for the given Boolean equation:

x y (x + y’)’+y
0 0 0
0 1 1
1 0 0
1 1 1

Problem 4 (15 points):
Translate into LC-2 machine language (binary) the LC-2 assembly language program shown
below:
 .ORIG x3000

 LEA R0,X E009

 AND R1,R0,#15 522F

 LDR R2,R0,#2 6402

 ADD R3,R0,R2 1602

 LDR R4,R3,#1 68C1

 LDI R5,Y AA0E

 ADD R6,R0,#-4 1C3C

 LDR R7,R6,#5 6F85

 HALT F025

X .FILL x1 0001

 .FILL x2 0002

 .FILL x3 0003

 .FILL x4 0004

 .FILL x5 0005

Y .FILL x3004 3004
 .END

Problem 5 (15 points):
What are the values of registers R0 to R7 when the LC-2 assembly language program in
Problem 4 is executed and reaches the HALT trap?

R0 = x3009

R1 = x0009

R2 = x0003

R3 = x300C

R4 = x0005

R5 = x68C1

R6 = x3005

R7 = x0002

Problem 6 (40 points):
In this problem you are asked to write five independent sections of LC-2 assembly code to set
registers R0 or R1 or LC-2 memory locations based on constants, the present values of R3 and
R4, or LC-2 memory locations. You may use registers R6 or R7 as “scratch” registers but
should not modify any other registers. You must assume that your code will be located
somewhere between memory locations x3000 and x30FF. You may use .fill’s when
needed to initialize memory locations. You should assume that these .fill’s would also be
stored in memory locations x3000 to x30FF.

In these subproblems, the code to implement is given in the psuedo-C notation used in class
lectures. Rn will be used as a reference to LC-2 register n. M[n] will be used as a reference to
LC-2 memory location n.

R0 ← R4 | R5 ; NOT R6, R4
 NOT R7, R5
 AND R0, R6, R7
 NOT R0, R0
R0 ← 3*R0 + 1 ; ADD R6, R0, R0
 ADD R0, R6, R0
 ADD R0, R0, #1
if (R0 > 30) LD R6, M30
 R0 ← R0 - 30 ; ADD R6, R6, M30
 BRzp NS
 ADD R0, R6, #0
 NS …
 …
 M30 .FILL #-30
while (R0 >= 0) BR MLP
 R0 ← R0 + R0 ; LP ADD R0, R0, R0
 MLP BRzp LP
M[x4100] ← M[x4100] + 5 ; LDI R6, MX
 ADD R6, R6, #5
 STI R6, MX
 …
 MX .FILL x4100

Problem 7 (20 points):
Suppose A is “declared” as an array of 100 uninitialized LC-2 integers with:

A .blkw 100
Write LC-2 code to set elements A[2], A[98], and A[R5], where R5 refers to the contents of
register R5, to the value 3. You may assume that the array A resides in the same page as your
code, and you may use registers R0, R1, and R2 as “scratch” registers.

A[2] = 3 ; LEA R0, A ; R0 <- A
A[98] = 3 ; AND R1, R1, #0
A[R5] = 3 ; ADD R1, R1, #3 ; R1 <- 3
 STR R1, R0, #2 ; A[2] = 3
 LD R2, C98
 ADD R2, R0, R2
 STR R1, R2, #0 ; A[98] = 3
 ADD R2, R0, R5
 STR R1, R2, #0 ; A[R5] = 3
 …
 C98 .FILL #98
Problem 8 (20 points):
The VAX computer has an instruction called BIC (Bit Clear) that performs the logical operation
α β′. Write an LC-2 subroutine called BIC in assembly language that performs this operation on
two arguments X and Y. You should assume that BIC receives and returns its arguments on a
standard LC-2 stack frame. In other words, implement the C function shown below in LC/2
assembler using the stack frame format of chapter 14.

int BIC(int x, int y) {
return x & ~y;

}
 BIC STR R7, R6, #1
 LDR R0, R6, #3
 LDR R1, R6, #4
 NOT R1, R1
 AND R0, R0, R1
 STR R0, R6, #0
 LDR R7, R6, #1
 LDR R6, R6, #2
 RET

Problem 9 (20 points):
Show how to call the LC-2 BIC subroutine of Problem 8. The two arguments passed to BIC are
stored in registers R4 and R5 and the result should be stored in R3. Assume the size of the
activation record of the calling routine is six words. That is, do:
That is, do:

R3 = BIC(R4, R5) ;

 STR R4, R6, #9
 STR R5, R6, #10
 ADD R6, R6, #6
 JSR BIC
 LDR R3, R6, #6

Problem 10 (20 points):
Translate the following worthless function from C to LC-2 assembler. Use Chapter 14 style
activation records to transmit parameters.

int dmbprg(int X, int *C, int *A) {
 int T ;
 if (X < 0)
 T = *C + 1
 else
 T = A[X] + 1 ;
 return T ;
}

 DMBPRG STR R7, R6, #1
 LDR R0, R6, #3 ; R0 <- X
 BRzp DMBELS
 LDR R1, R6, #4 ; R1 <- C
 BR DMBALL
 DMBELS LDR R1, R6, #5 ; R1 <- A
 ADD R1, R6, R1 ; R1 <- &A[X]
 DMBALL LDR R1, R1, #0 ; R1 <- *R1
 ADD R1, R1, #1
 STR R1, R6, #0
 LDR R7, R6, #1
 LDR R6, R6, #2
 RET

Problem 11 (20 points):
How have the following four concepts, programs, or standards been used in CSCI 255:

combinational circuit
A circuit where the present output depends solely on the present
input. That is, there is no dependence on past inputs.

IA-32
Stands for Intel Architecture-32, the instruction set architecture
for the Intel chips used in most of today’s personal computers.

make
A Unix command to control the compilation of programs from
source files. Used in a CSCI 255 lab.

memory-mapped I/O
A way of performing I/O by having device interfaces mimic
memory addresses. Initiating and testing I/O devices is done by
reading and writing to device registers.

	Problem 3 (10 points):
	
	
	Problem 6 (40 points):

