
Spring 1994 CSCI 202-001

7.1

Midterm #2
1 April, 1994

This is an open books, open notes exam to be turned in by 10:50 AM.

Name:

Problem 1. (10 points)

Write a C procedure that takes a pointer to an integer as an argument and adds 15 to the integer.
Call the procedure Add15 and start with the following outline:

Add15(int *pI)
 {
 /* You add stuff in here */

 } /* Add15 */

Suppose you want to call Add15 to add 15 to an integer x. Fill in the space between the
parenthesis in the following statement to show how this is done.

Add15();

Problem 2. (15 points)

Write a C procedure that takes a pointer to a character as an argument and stores the next non-
blank character read from standard input into that character. Call the procedure
GetNextRealChar and start with the following outline:

GetNextRealChar(char *pI)
 {

 } /* GetNextRealChar */

PS: The routine getchar() returns the next character read from standard input. getchar
takes no arguments.

Show how you would call GetNextRealChar to read the next non-blank character into the
5'th position of a character array Buffer.

GetNextRealChar() ;

Spring 1994 CSCI 202-001

7.2

The reaming problems are concerned with doubly linked lists. Use the following C data structure
definition in your answers.

typedef struct dl_node_tag {
 float name ;
 struct dl_node *next ;
 struct dl_node *prev ;
} DL_Node_type ;

An example of two of these nodes pointing at each other is shown to the left of the C data
structure definition.

Problem 3. (15 points)

Write a C procedure that will take a floating point number as
an argument and return a single node of type DL_Node_type
with the value field equal to the argument and the next and
prev fields pointing to the newly allocated node. If the
procedure is called with the value 3.14, the returned data
structure will look like the rather odd node shown on the right.

DL_Node_type *MakeOddNode(float f)
 {

 } /* MakeOddNode */

Problem 4. (20 points)

Starting with the variable pL
pointing to the leftmost node of the
doubly linked list on the right, show
the result of executing the following
five C statements in order.

pL->next->value = 1040.0 ; /* 1 */
pL->next = pL->next->next ; /* 2 *
pL->prev = pL->next->prev ; /* 3 */
pL = pL->next ; /* 4 */
pL->next = pL ; /* 5 */

You may find it useful to use the numbers in the comments to document the changes.

Spring 1994 CSCI 202-001

7.3

Problem 5. (20 points)

Suppose you have two pointers, pLeft and pRight, declared as follows:
DL_Node_type *pLeft, *pRight;

that point to the left and right ends (or head and tail, if you prefer) of a doubly linked list. Write
a properly initialized C loop to add up all the floating point numbers stored in the value fields of
this doubly linked list and store this result in the float variable sum.

/* Here's some variable declarations to get you started. */
float sum ;
DL_Node_type *pTemp ;

Problem 6. (20 points)

Again, suppose you have two pointers, pLeft and pRight, declared as follows:
DL_Node_type *pLeft, *pRight;

that point to the left and right ends of a doubly linked list.

This time write a few lines of C to remove the present left and right ends of the list and to set
pLeft and pRight to point to the new ends of the list. Be sure that your code works correctly
when the list has a small number, e. g., one or two, of elements.

