
Spring 1990 Comp 190: Operating Systems 190-11.1

Midterm 1–February 23, 1990

Open book section (36 points)

The exam is to be turned in at 2:50 pm. The closed book section should be turned in
before you open your books and notes to work the open book section. For the open book
section, write your answers either on the exam in the space provided (if you can write very
small) or on separate pieces of paper.

I have neither received nor given any unauthorized aid on this exam.

There is a Unix utility pwd which prints the pathname of the current directory, as in:

% pwd
/usr/vsr/wsr

pwd uses a tree ascent algorithm to accomplish its task. It starts at the current directory
and follows the “..” pointers to the root directory. At each step of the recursive ascent,
pwd has a simple task. It has a reference to a directory D as a relative pathname. It must
search the parent directory of D to find a component name referring back to D. In our
example, if D is “../../” (i.e., “/usr/”), the component name to be discovered is vsr.
Consequently, each recursive step of pwd begins with the search:

foreach component C of D/..
if C refers to D then break ;

This question examines the complexities of determining when C refers to D. The
name of a component, C, of D/.. is obtained by searching the bytes of D/..’s directory
file. The only other relevant information about C contained in the directory file is its inode
number. We will explore how C’s name and inode number as stored in the directory can
be used to determine if C refers to D. (Forget everything you know about symbolic links
before you write your answer. They’re irrelevant in this context.)

Problem 1. (4 points)
It is possible that C’s inode number as stored in the directory is not the same as the

real inode number used to access C in the inode table. When can C have two different
inode numbers?

Problem 2. (4 points)
Furthermore, it is possible that C and D may have the same real inode numbers even

though they refer to different directories. Give an example illustrating this.



Spring 1990 Comp 190: Operating Systems 190-11.2

Problem 3. (9 points)
Thus, in general pwd must obtain a copy of the real in-core inode of each component

C of the parent directory to see if C really refers to D. pwd uses the file status system
calls [§5.11] to obtain inode copies. What disk accesses must the kernel make in order to
get the inode? Is this likely to be expensive in terms of machine resources? Will the last
inode obtained “cost” as much as the first?

Problem 4. (6 points)
Assume that we really want to avoid these extra disk accesses whenever possible. Use

the facts you’ve uncovered in the last three questions to construct an efficient test for
determining when C refers to D. That is, figure out when you can avoid obtaining a copy
of C’s inode.

Problem 5. (6 points)
Could you speed up pwd by having it test if C is a directory before getting C’s inode.

If so, how? If not, why not?

Problem 6. (6 points)
Could you speed up pwd by having it read the mount table? If so, how? If not, why

not?

Problem 7. (1 point)
Which algorithm of the Unix kernel could loosely be described as the “inverse” of

pwd. (If you can’t remember the name, just give a two sentence description. Don’t bother
looking it up.)


