
Spring 1990 Comp 190: Operating Systems 190-19.1

Things to know by May 2

Warning. This is not guaranteed to be everything you need to know.

The final exam is 9:00 am on Wednesday, May 2, in Sitterson 011.
Know everything you were supposed to know for the two midterms and know some-

thing about the following terms:

base register broadcast (message) CSMA/CD
CSR device driver device registers
free token Internet limit register
local-area network memory-mapped I/O page fault
page table physical memory programmed I/O
switch table token ring virtual memory
virus

The final is based on Chapter 1 though Subsection 8.1.4 (pp. 1-255), Chapter 10 up
to Subsection 10.1.2.3 (pp. 312-322), and Sections 11.3 and 11.3 (pp. 382-388) of the
textbook, the October 1987 Scientific American article “Networks for Advanced Com-
puting” by Robert Kahn, the January 1987 IEEE Network article “The IBM Token-Ring
Network: A Functional View” by Norman Strole, Section 5.5.3 (pp. 209-218) of Computer
Science: A Modern Introduction by Goldschlager and Lister, and Chapter 2 (pp. 13-25)
of Internetworking with XINU by Douglas Comer.

Understand what a device driver is, how it does its task, and how the operating system
is interfaced to it.

Understand how the operating system manages page tables.
Understand how token rings and Ethernets allocate the communication channel.
In addition to those problems you looked at the first two midterms, you might consider

exercises 1 and 11 of Chapter 10 of Bach’s book and exercises 2.9 and 2.10 (p. 25) of
Comer’s.

The last five pages of this handout is a copy of last year’s final exam in Comp 190.
Last year we also covered windowing systems. One of the short definitions deals with that
topic.



Spring 1990 Comp 190: Operating Systems 190-19.2

Final exam–May 2, 1989
Closed book section (40 points)

The exam is to be turned in at 5:00 pm.
Work the closed book section first and turn it in before you consult your books and

notes to work on the open book section. For the closed book section, write your answers
on the exam itself. For the open book section, write your answers on separate pieces of
paper.

University regulations require that you sign the following pledge on the first page of
your turned-in exam.

I have neither received nor given any unauthorized aid on this exam.

Problem 1. (24 points–3 points each)
Give short definitions (one or two phrases or sentences) of the following terms.

datagram

hashing

inode

ports (concerning sockets)

process table

switch table

Unix

window (as in the X window system)



Spring 1990 Comp 190: Operating Systems 190-19.3

Problem 2. (12 points–3 points each)
Give a brief description of what the following UNIX system calls do at the user level.

You don’t need to describe the implementation but say something about what they return.

execve(path, argv, envp)

fork()

sendto(s, msg, msg len, flags, to, to len)
ignore the msg len, flags, and to len parameters

setuid(uid)
be sure to mention when it fails

Problem 3. (4 points)
Name the three regions of a Unix process and describe briefly (five words or less for

each) their contents.



Spring 1990 Comp 190: Operating Systems 190-19.4

Final exam–May 2, 1989

Open book section (60 points)

The exam is to be turned in at 5:00 pm. The closed book section should be turned in
before you open your books and notes to work the open book section. For the open book
section, write your answers on separate pieces of paper.

Problem 1: (5 points)
Suppose a group called stooges has been created with users moe, curley, and larry.

Subproblem 1.a: (1 point)
Can curley create a file which is readable only by stooges? How?

Subproblem 1.b: (4 points)
Suppose moe wants to create a program nyack that allows either curley or larry

to send signals to any process moe is running as if moe sent the signal himself. Can moe
(assuming he has worked hard in Comp 190) write this program? Can he restrict nyack
so that only stooges can run it?

Problem 2: (5 points)
A process checks for signals when it enters or leaves the sleep state (if it sleeps at an

interruptible priority) and when it returns to user mode from the kernel after completion
of a system call or after handling an interrupt. Why does the process not have to check
for signals when entering the system for execution of a system call?

This problem is exercise 12 on page 241 of Bach’s book.

Problem 3: (6 points)
A networking hacker, having just studied the Unix code for obtaining locked inodes

(Figure 4.3, page 64 of Bach), proclaims: “It’s just like CSMA/CD.” Questioned further
he mutters something about sleeping on a locked inode and then checking the lock when
awakened.

What do think is on the mind of this displaced communications geek?

Problem 4: (5 points)
We are snooping on a process running on a machine where the page size is 1000 bytes.

We notice the following virtual to read address mappings: virtual 115 to real 19115, virtual
1492 to real 47492, virtual 1989 to real 47989, virtual 2338 to real 38338, and virtual 3456
to real 17456. We then observe that accessing virtual address 4545 results in a page fault.

Draw a page table for the first five pages used by this process.



Spring 1990 Comp 190: Operating Systems 190-19.5

Problem 5: (10 points)
You have been requested to write a someone unusual (and perhaps silly) device driver

that will be used to determine whether or not some machine is transmitting on the Ether-
net. Your device driver should behave as follows:
(1) No matter how many bytes you try to read from this device, it will never actually

read more than one byte. Thus “read(fd, buff, 1000)” and “read(fd, buff, 1)”
both only change the first byte of buff.

(2) The read byte is ’B’ if the Ethernet is busy and ’F’ it is not.
(3) All writes to this device have no effect. They are all successful, but any written data

is ignored. (Writes to this device are just like writes to /dev/null.)
(4) Your machine has a DEQNA ethernet interface like the one described in class and in

Comer’s book. The only facts you need to know about the DEQNA is that it’s control
and status register is stored at bus location 0174456 and that bit 13 of the CSR is 1
if a carrier is present on the ethernet and bit 12 of the CSR is 1 if the fuse is ok.

Subproblem 5.a: (7 points)
Outline with precision and brevity, how you will modify the kernel to implement this

device driver.

Subproblem 5.b: (3 points)
Suppose the device driver is to be accessed via the special file /dev/etherstat. De-

scribe how you must modify the file system to make this device accessible to user programs.

Problem 6: (11 points)
In Unix it is possible to mount a file system read-only by specifying the “ro” option to

the “mount” command. Suppose a read-only file system /dev/cd0 that has been mounted
on directory /nowrite and that the root directory of this mounted file system contains
a subdirectory mtpnt. Thus /nowrite/mtpnt is now directory within the read-only file
system.

Subproblem 6.a: (2 points)
Attempts by the superuser to change the access permissions of /nowrite/mtpnt fail.

Why?

Subproblem 6.b: (6 points)
Now, suppose the superuser wishes to mount a new file system /dev/dsk5 on the

directory /nowrite/mtpnt. The manual page for the mount system call does not seem to
prohibit the use of a read-only directory as a mount point. That is, mounting on top of
directories of read-only file systems is not listed as an error. How can the operating system
perform a mount on a read-only file system?

Subproblem 6.c: (3 points)
Assuming the mount succeeds, now what happens if the superuser tries to change the

access permissions of /nowrite/mtpnt?



Spring 1990 Comp 190: Operating Systems 190-19.6

Problem 7: (18 points)
The following program has been successfully compiled and run 100 times on a Unix

system. It wrote “AA” to standard output 47 times, it wrote “AB” once, it wrote “ABA” 39
times, it wrote “ABB” 12 times, and it wrote “BAA” once.

Subproblem 7.a: (3 points)
Draw a picture showing the pipes created by the processes.

Subproblem 7.b: (2 points)
Why is two the least number of characters that can be written to standard output?

Subproblem 7.c: (2 points)
Why is three the greatest number of characters that can be written?

Subproblem 7.d: (3 points)
Describe how the program can produce “AA” as its output.

Subproblem 7.e: (4 points)
Describe how the program can produce “AB” as its output.

Subproblem 7.f: (4 points)
Describe how the program can produce “BAA” as its output.

#include <signal.h>

/* 1 */ main(argc, argv)
/* 2 */ int argc;
/* 3 */ char *argv[];

/* 4 */ {
/* 5 */ int p[2], pid;
/* 6 */ char b = ’X’;

/* 7 */ pipe(p);
/* 8 */ write(p[1], "A", 1);
/* 9 */ pid = fork();
/* 10 */ if (pid > 0) {
/* 11 */ close(p[1]);
/* 12 */ read(p[0], &b, 1);
/* 13 */ write(1, &b, 1);
/* 14 */ kill(pid, SIGBUS);
/* 15 */ read(p[0], &b, 1);
/* 16 */ write(1, &b, 1);
/* 17 */ wait(0); }
/* 18 */ else {
/* 19 */ write(p[1], "B", 1);
/* 20 */ read(p[0], &b, 1);
/* 21 */ write(1, &b, 1);
/* 22 */ exit(0); }}


