Spring 1990 Comp 190: Operating Systems 190-3.1
What you really want to know

Those concerned about the Comp 190 workload (and grades) should find this handout
interesting reading. It should give you a pretty good idea about the instructor’s expecta-
tions.

First, you will find copies of last year’s first midterm. Second and third, you’ll find a
copy of the second and fifth homework assignments from last year. Right now, the exams
questions and homework assignment may make no sense to you. Don’t worry, in a couple
of months you’ll understand it.

By the way, the undergraduate course grades for Comp 190 in Spring 1989 were 7 A’s,
12 B’s, 3 C’s, 1 D, and 1 F and in Spring 1988 were 11 A’s, 12 B’s, 3 C’s, and 2 F/AB’s.



Spring 1990 Comp 190: Operating Systems 190-3.2

OLD Midterm 1-February 24. 1989
Closed book section (64 points)

The exam is to be turned in at 2:50 pm. Work the closed book section first and turn
it in before you consult your books and notes to work on the open book section. For the
closed book section, write your answers on the exam itself. For the open book section,
write your answers on separate pieces of paper.

University regulations require that you sign the following pledge on the first page of
your turned-in exam.

I have neither received nor given any unauthorized aid on this exam.

Problem 1. (24 points—4 points each)
Give short definitions (one or two phrases or sentences) of the following terms.
critical region
delayed write
locking
path name

reference count

user mode

Problem 2. (16 points—4 points each)

Give a brief description of what the following UNIX system calls do at the user level.
You don’t need to describe the implementation!

chmod(filename, mode)

fork()

link(filenamel, filename2)

pipe(fdptr) —don’t worry about which end is which



Spring 1990 Comp 190: Operating Systems 190-3.3

Problem 3. (4 points)
What are the two different Unix operating systems often mentioned in class?

Problem 4. (4 points)
Suppose a C program starting with the following header:
main(argc, argv)
int argc;
char *argvl[];
is compiled and the compiled code is stored in the file now. If the command:
% now is the time

is executed, what are the values of argc and the array elements of argv?

Problem 5. (4 points)

Suppose P[0] is a file descriptor that refers to the read end of a pipe. Under what
circumstances will the system call
read(P[0], buff, buff_size)
return zero?

Problem 6. (4 points)
List the following six items in order of size (smallest to largest):

a. cylinder group d. data block
b. track e. cylinder
c. file system f. disk

Problem 7. (4 points)

Pick a random data block of a file system. If the file system is consistent, what is the
largest number of inodes that could point to that block?

Problem 8. (4 points)

Suppose the file /foo/onu has file access permissions 0666, i.e., readable and writable
to all users. Under what circumstances will the system call
open("/foo/onu", 0_RDONLY)
return zero?



Spring 1990 Comp 190: Operating Systems 190-3.4

old Midterm 1-February 24, 1989

Open book section (36 points)

The exam is to be turned in at 2:50 pm. The closed book section should be turned in
before you open your books and notes to work the open book section. For the open book
section, write your answers on separate pieces of paper.

Problem 1. (24 points)
I'm logged into napoleon. (Honestly, I am). When I type the line:
% ls -id /bin /tmp
which displays the inode numbers of /bin and /tmp, napoleon responds with the following
two lines:
110 /bin

2 /tmp
Immediately, I type the line:
hls -i /
which displays the inode numbers of all files and subdirectories referenced within the root
directory. Among the many lines printed are the following:

110 /bin
168 /tmp

Why are different inode numbers given for “/tmp” in these two cases? Why is only
one inode number given for “/bin” in both cases?

What data blocks were read to execute the two 1s commands? Draw how the inodes
for /, /bin, and /tmp refer to each other either by direct pointers or by indirect references
through directory files and mount table entries.

Problem 2. (12 points)

Assume the following:

A data block is 4000 bytes long.

An integer is 4 bytes long.

An inode can hold 10 direct block references.

A file 1000000 bytes long has been opened for reading at descriptor 7.

The system call 1seek(7, 100023, 0) has just been successfully executed.

What happens when a read of 100 bytes is attempted on file descriptor number 77
You only need explain how the kernel determines which data blocks must be brought into
the cache to accomplish the read.



Spring 1990 Comp 190: Operating Systems 190-3.5

old Homework #2 (10 points)
Due, Monday, February 6, 1989

Write a program makefiles which takes two arguments: the first, a file name prefix P,
and the second, an integer n, and then creates n files P.0 through P.n — 1 each containing
the line:

I enjoy programming in C.
To complete this assignment you will need to use the system calls open and write

and the C library fucntions atoi and sprintf.
You will need to use cc, the C compiler, to compile your program. By the way,

% rm haha.*

will remove all files whose names start with haha.

Rules of engagement

Turn in a printout of your program.

You must do all the typing required to accomplish this assignment. Any other help is
permitted with the following exceptions: (1), you may not copy anyone else’s program to
complete this assignment, and (2), all notes you bring to the terminal with you must have
been written by you.

You may find running your first C program to be painful.



Spring 1990 Comp 190: Operating Systems 190-3.6
old Homework #5 (20 points)

Due, Friday, March 31, 1989

Your program takes a single argument P.

First, it prints a message stating whether or not P is executable by its owner. (Just
assume P is a file readable by you. You don’t need to check that.) If is not executable,
then stop. Otherwise, continue.

Second, it prints P’s magic number and a message stating if the magic number is good
or bad. If it is bad, then stop. Otherwise, continue.

Third, it prints out all the names in P’s symbol table. (All executable object files (see
figure 7.20, page 219) have a section containing a symbol table.)

In order to make life bearable, the file /unc/brock/home5/read sym.o contains a
compiled C subroutine read symbol that when called with an integer £ and a pointer
sym_name to a character string buffer will:

(1) read the symbol in the executable object file opened at file descriptor £ beginning at
the present offset,

(2) place the ASCII name of that symbol in the buffer sym name,

(3) move the offset of file £ to the beginning of the next symbol, and

(4) return 0, if successful, and -1, otherwise.

So, all you’ve got to do is figure out how to seek f to the beginning of the first symbol

and how many symbols to read. Incidently, /unc/brock/home5/read_sym.c contains the

source for read_symbol.

The program /unc/brock/home5/homeb is my compiled solution. You can run it to
get some idea of what your program’s output should be. By the way, the C program that
produced homeb was 43 lines long.

Warning

Not much code needs to be written but you’ve got a major task. You must understand
the format of executable object files on napoleon. Most of the information you need will
come from the manual page for a.out and Figure 7.20 (p. 219) of your textbook. Look at
both of these carefully before you start.

You are also going to have to become a C guru. You’ll need to know how to use
structures of included files and how to combine compiled modules with your own code.
Hint — I used the following;:

cc -g -o home5 home5.c read_sym.o |& more

to compile my program.

Rules of engagement
Turn in a printout of your program.
You may work in groups of two ezcept both members of the team cannot work for the
Department of Computer Science and team members must split the work, both intellectual
and grunt, equally.



