Spring 1989 Comp 190: Operating Systems 190-24.1
Some answers for the closed section

Subproblem 1.b

moe can write a setuid program, or moe can just make a copy of /bin/kill and make
it setuid moe and executable only by members of group stooges.

Problem 2

The key phrase found on page 201 of the text is “a process never executes in user
mode before handling outstanding signals.” So if a process begin executing in user mode
with no outstanding signals, though possibly with its stack rigged to invoke some signal
handlers, there is no way for a signal to be delivered to that process unless some transition
is made to kernel mode, either by an interrupt or system call. Consequently, there’s no
point in checking for signals when making the transition from user to kernel mode, because
there won’t be any to check for.

Problem 3

initial test for the lock on the inode ~ carrier sense

test of lock after sleep & collision detect

Uh. You see, if two processes wake up at the same time one will notice the lock is
already taken. Sort of. More or less. You get the idea.

Problem 4

page # real
0 1900
1 47000
2 38000
3 17000
4

on disk
It would be ok to put 3000 instead of 3 in the left column.

Subproblem 5.a

You need to give your device a number, let’s use a.

You need to write appropriate read, write, and open routines. Write is trivial. Just
use /dev/null’s. Not clear open really needs to do anything. Read is more interesting.
The device read routine must read the CSR, i.e., it must read address 0174456. If bit 13
of the CSR is on, a /tt 'B’ is placed in the read buffer. Otherwise, a /tt 'F’ is put in the
read buffer. In either case, the device read routine must indicate that only one byte was
read.

Finally, the device I/O routines must be installed in position « of the device switch
table.

Subproblem 5.b

mknod /dev/etherstat c a 0

Spring 1989 Comp 190: Operating Systems 190-24.2

Subproblem 6.a

Changing the access permissions of /nowrite/mtpnt means changing a disk inode on
a read-only file system and that is not allowed.

Subproblem 6.b

The inode mount point flag is part of the in-core inode and not part of the disk inode
(p. 63, Back). Therefore a mount operation changes kernel memory, not disks, so the
usual mount algorithm should work fine. (By the way, I never really tested this, but the
logic seems reasonable.)

Subproblem 6.c

Now changing the access permissions of /nowrite/mtpnt means changing the disk
inode of the root of the file system /dev/dsk5. That can be done as long as /dev/dsk5 is
mounted read/write.

Subproblem 7.d

There are several ways. For example, the parent kills the child because it executes
any statements.

Subproblem 7.e

The parent kills the child after the child writes B’ to the pipe but before the child
reads from the pipe.

Subproblem 7.f

A semi-tough one. Again, there is more than one correct answer.

The parent executes its first two statements, 11 and 12. It reads the ’A’ from the
pipe. A context switch occurs.

The child executes. It writes a B’ to the pipe, reads the B’ back from the pipe, and
writes the B’ to standard output. It then exits, and another context switch occurs.

The parent continues. It writes (statement 13) the *A’ it had read before the context
switch. The pipe now has no writers, so the parent’s read of the pipe detects the end-of-file
and does not change the value of character b. Thus, the A’ is written a second time.

