This is the three questions for a "take-home" section of the final. UNC Asheville requires all students to be assessed in their writing skills within their major and CSCI 434 is a course where this assessment is required. (I learned this last week.) Here are three problems to solve with nicely written answers. Give a solution for the problem appropriate for your fellow classmates and your professor.

All problems are based on a variation of the middle thirds problem (Problem 4.48) of the textbook which involves two languages from the alphabet $\Sigma=\{0,1\}$

- D_{1}, the "language of all strings that contain a 1 in their middle third"
- D_{2}, the "language of all strings that contain two 1 's in their middle third" I am re-interpreting this as meaning exactly one 1 in D1 and two 1's in D2. I think this makes it a little easier to understand, solve, and illustrate. That is:
- $\mathrm{D}_{1}=\left\{x y z \mid x, y, z \in(0+1)^{*}\right.$ and $|x|=|y|=|z|$
where $x \in 0^{*}, y \in 0^{*} 10^{*}$, and $\left.z \in 0^{*}\right\}$
- $\mathrm{D}_{2}=\left\{x y z \mid x, y, z \in(0+1)^{*}\right.$ and $|x|=|y|=|z|$
where $x \in 0^{*}, y \in 0^{*} 10^{*} 10^{*}$, and $\left.z \in 0^{*}\right\}$
Or, equivalently, D_{1} and D_{2} are of size $3 n$ for some integer $n \geq 1$ and are composed only of 0 's except that the middle third of D_{1} contains exactly one 1 and the middle third of D_{2} contains exactly two 1 's.

For example, 010 and 000100 are in D_{1}, and 001100 and 000101000 are in D_{1}, but $\epsilon, 0,1,000,0110$, and 000111000 are in neither D_{1} nor D_{2}.
Here are the three proofs you are to make. Try to keep each at a couple of paragraphs.

Mini Writing Program 1

Show that D_{1} is a context-free language with a well-written argument that the following context-free grammar generates D_{1}.

$$
D \rightarrow 010|00 D 0| 0 D 00
$$

I suggest using a proof by induction (pp 22-25 of the textbook). Start by thinking of why the 3 strings in D of size 6 can be safely extended to 5 strings of size 9 .

Mini Writing Problem 2

Show that D_{2} is not a context-free language.
Yes, you must use the Pumping Lemma (Theorem 2.34, p 125).
Remember that you do not choose the pumping length, the Pumping Lemma does. You call the Pumping Lemma and it returns a pumping length that you may use to cleverly choose a magic string s that can be divided into the uvwxy.

You can not start with something like:
Consider the string 000100. Let's assume that p is 3.
However this is OK:
Suppose p is the pumping length. Consider the string $0^{p^{*} 434} \mathrm{oats}^{\mathrm{p}} \ldots$

Mini Writing Problem 3

Create a Turing machine to decide D_{2}.
Do not draw a state diagram, such as the one seen in Figure 3.10 (p 173).
Use Example 3.11 (p 174) as your model. Make a list of numbered actions. Use English to describe these actions. Use phrase "mark the X" (see the discussion of marking on page 175) or "cross off the Y " or "scan to the next Z ". "Move to the $2^{\text {nd }}$ X after the $3^{\text {rd }} Y$ " is also OK as is "If X is marked, goto step 7".

What is allowed and not allowed?

It is OK to discuss the algorithms in a general way. For example, you could gather around a whiteboard and animate the actions of the Turing machine. You could also illustrate the kinds of strings that could generated by the grammar shown for Problem 1.

It's a bit like a Literature assignment: You can't copy the phrases of others. Also, you can't write the solution jointly. Remember, I am required to assess your writing.

How to turn it in?

We've had three exams given in 100 minute periods. The final is given in a 150 minute period. The in-class part of the final will be targeted for completion in about 75 to 90 minutes. (You are allowed to stay for the entire 150.)

You could try writing these proofs during class, but I strongly recommend against that. I suggest you write up these proofs and submit them to the Moodle before Thursday, 10 December. I am OK with the usual formats: shared Google Doc, PDF, OpenOffice, MS Word, LaTeX, ...

Bringing a printed copy to class would also be appreciated.

