
UNCA CSCI 431
Exam 2 Fall 2019

3 December 2019 – 3:15 pm to 4:55 pm

You may use your notes, printouts, scratch paper, and your textbook. You
may not use any calculators, electronic devices, or help from any other
source or person.

Anyone needing a break during the exam must leave their exam with the
instructor.

This exam must be turned in before 4:55 PM.

Name:________________________________

There are five equally-weighted questions.

Problems 2 and 5 spread over two pages to allow more room for
artwork.

Extra space for long-winded answers of exam problems.

During the exam, it was decided that the exam grade
would be computing by dropping the question with the
lowest score. The remaining four will be equally weighted.

Page 1 of 8

Problem 1: Regular Expressions, Grammars, and Derivations

Problem 1A: Regular expressions
Write a regular expression that represents all strings of 0 and 1 with an even
number of 1’s. You can use either the textbook or grep syntax in your answer.

Note that 001100 and 11 and ε are in, but 000100 and 1 are out.

(0*10*10*)* or 0*(10*1)*0* or (0*10*1)*0*

Problem 1B: Context free grammar
Write a context free grammar that represents all strings of 0 and 1 with an odd
number of 1’s.

Note that 001100 and 11 and ε are in, but 000100 and 1 are out.

This answer was submitted by Cole Peterson.

S➔ S1S1S | S0 | ε

Problem 1C: String derivation
Illustrate the derivation of the string 0001100 using the grammar you created in
Problem 1B.

This answer is dependent on your answer for Problem 1B.
S➔S1S1S➔S01ε1S0➔S0011S00➔S00011ε00➔ε0001100➔0001100

Page 2 of 8

Problem 2: CFG transformations

Use the following CFG in both subproblems
• The alphabet for the language is Σ = {0, 1}.
• The start variable for the language is T.
• Here are the rules:

• T ➜ 0M0
• M ➜ 1T | T1 | ε

Problem 2A: CFG → CNF
Convert the Context Free Grammar to Chomsky Normal Form.

You should stick with the procedure described in Example 2.10 of the textbook.

Add new start state S0

 S0 ➔ T
 T ➜ 0M0
 M ➜ 1T | T1 | ε
Remove ε productions
 S0 ➔ T
 T ➜ 0M0 | 00
 M ➜ 1T | T1
Remove unit rules (S0 ➔ T)
 S0 ➔ 0M0 | 00
 T ➜ 0M0 | 00
 M ➜ 1T | T1
Add variables for 0 and 1
 S0 ➔ XMX | XX
 T ➜ XMX | XX
 M ➜ YT | TY
 X ➜ 0
 Y ➜ 1
Fix targets with more than two variables
 S0 ➔ XP | XX
 T ➜ XP | XX
 M ➜ YT | TY
 P ➜ MX
 X ➜ 0
 Y ➜ 1

Page 3 of 8

Continuing with Problem 2

Use the following CFG in both subproblems
• The alphabet for the language is Σ = {0, 1}.
• The start variable for the language is T.
• Here are the rules:

• T ➜ 0M0
• M ➜ 1T | T1 | ε

Problem 2B: CFG → PDA
Generate a PDA the Context Free Grammar shown above.

You should stick with the flower algorithm presented in Theorem 2.20 of the
textbook.

This answer submitted by Cristopher Borgstede

Page 4 of 8

Pumping Lemma (Theorem 1.70)
If A is a regular language, then there is a number p (the pumping length) where, if
s is any string in A of length at least p, then s may be divided into three pieces,
s = xyz, satisfying the following conditions:

• for each i ≥ 0, xyiz ∈ A
• |y| > 0
• |xy| ≤ p

Problem 3: Disproving regularity

Show that the language {0i10i | i ≥ 0} is not regular.

Note that 1 and 001 and 00100 are in, but 0000, 00011000 and 101 are out.

Let p be the pumping length and let s be 0p10p which is longer than p.

By the pumping lemma, there exists x, y, and z such that 0p10p = xyz
• for each i ≥ 0, xyiz ∈ A
• |y| > 0
• |xy| ≤ p

From |y| > 0 and |xy| ≤ p and 0p10p = xyz, we know that
• xy = 0q where q ≤ p
• y = 0r where r > 0
• Because y can be deflated, 0p-r10p must be in A
• However 0p-r10p cannot be in A because p-r < p

By contraction, {0i10i | i ≥ 0} cannot be regular.

This is a bit more formal than I would usually write it.

Page 5 of 8

Problem 4: Turing Machines

In Problem 4 of the last exam, you (hopefully) proved that the following language
is not context free:

• {aibjck | i ≥ j and i ≥ k}
In this exam, show that this language is decidable by “designing” a Turing
machine that decides language. You may assume that the input alphabet for the
language are the symbols a, b and c.

In your design, do not write a super-formal description that satisfies the
formalities of Definition 3.3 as shown in Figure 3.10. Instead give a concise
“informal” description similar to that shown in Example 3.11 (p 174). You could
also use some drawings of Turing Machine configurations to illustrate your
solution.

If you run out of room here, continue on the bottom of the page 7.

There are many ways to do this. Here is one.
By the way, I improved my answer after reading some of your solutions.

Stage One: Scan from the beginning to end making sure that, in the
input string, a’s precede b’s and b’s precede c’s in the input and there
are no other symbols. This does not involve changing the input tape
because this activity is testing if the input matches the regular
expression a*b*c*. Reject the input string, if the regular expression test
fails!

Stage Two: Now see if there are at least as many a’s as b’s and as many
a’s as c’s. Do this by making several passes over the input. On each pass
try to “cross off” one a, b, and c. Continue these passes until either:

• There was no a to cross off, but there was at least one b or c to
cross off. This means that either there are more b’s than a’s or
more c’s than a’s. The Turing machine should REJECT.

• There was no b and no c to cross off. This means that there were at
least as many a’s as b’s and as many a’s as c’s. The Turing machine
should ACCEPT.

• Otherwise (one a and at least one b or c to cross off), continue.
This process is guaranteed not to loop.

My original answer had separate passes for checking off b’s and c’s.
Zach Boone, David Pulse and Cole Peterson “inspired” this one pass
check-off solution.

Page 6 of 8

Problem 5: Counting and reducing

Problem 5a: Enumerating the powers
Show that the set of all integral powers of integers, i.e., in for integers i and n, is
countable. Consider 00 to be 1, just like C, Java, JavaScript and Python. Also, 3-5
would be in this set.

This is a variation of the correspondence argument for ℕ and
ℚ, shown in Figure 4.16 of the textbook. You could just insert
the diagram here and replace i/n with in,

Alternatively, you could just mention that the elements, i/n, of
ℚ can by mapped into the powers, in, which is a subset of ℚ.
You should also mumble something about how you are
handing the fact the 83 equals 46 but 8/3 does not equal 4/6.
But it really doesn’t matter since 9/3 equals 3/1. Either way
there is some double counting.

Page 7 of 8

Continuing with Problem 5

Problem 5B: Problem 5.24
Show that the language 5BTM defined below is decidable.

• 5BTM ={ <M, n, w> | n encodes a prime number
 or M is a Turing machine that accepts w}

By the way, the language ATM described below is undecidable.
• ATM = { <M, w> | M is a Turing machine that accepts w }

This is a really silly problem.

Suppose the 5BTM was decidable. Let’s build a new Turing
machine X that does something like the following.

• X receives an input <M, w> where M is a Turing machine
encoding.

• X “calls” 5BTM with <M, 4, w>
• Because 4 isn’t prime, 5BTM will accept only if M would

accept w.
• Therefore X implements ATM and is decidable.
• But, ATM is undecidable!
• Contradiction achieved.

Page 8 of 8

