UNCA CSCI 431

Exam 2 Fall 2019

5 November $2019-3: 15$ pm to $4: 55$ pm
You may use your notes, printouts, scratch paper, and your textbook. You may not use any calculators, electronic devices, or help from any other source or person.

Anyone needing a break during the exam must leave their exam with the instructor.

This exam must be turned in before 4:55 PM.
Name:
There are five equally-weighted questions.

Problem 1: Regular and context free languages (20 points)

Fixed point numbers are sequences consisting of digits and a single period to represent a few "real" numbers. The period should not be the first or last character of the string. Here are some examples:

- 434.001
- 0.1
- 00.1
- 0.000
(Usually 1. and . 1 would be allowed, but we are making the problem easier.)
Use the grep expression [0-9] in place of $(0+1+2+3+4+5+6+7+8+9)$ in your answers. It's a lot easier to write.

Part A: Write a regular expression specifying fixed point numbers.

Part B: Write a context free grammar specifying fixed point numbers.

Part C: Using your grammar, draw a parse tree for the fixed point number 11.05 .

Problem 2: CFG \rightarrow CNF (20 points)

Convert the following Context Free Grammar to Chomsky Normal Form.

- The alphabet for the language is $\boldsymbol{\Sigma}=\{\mathbf{a}, \mathbf{b}\}$.
- The start variable for the language is (as usual) \mathbf{S}.

Here are the rules:

- $\mathbf{S} \rightarrow$ aTa | b
- $\mathbf{T} \rightarrow$ bTb $\mid \boldsymbol{\epsilon}$

Avoid creativity and stick with the procedure described in Example 2.10 of the textbook as it was followed in last week's class meetings.

Problem 3: CFG \rightarrow PDA (20 points)

Generate a PDA that accepts the Context Free Grammar of the previous problem:

- $\mathbf{S} \rightarrow \mathbf{a T a} \mid \mathrm{b}$
- $\mathbf{T} \rightarrow$ bTb $\mid \boldsymbol{\epsilon}$

I suggest that you follow the flower algorithm presented in Theorem 2.20 of the textbook (which you must have used for your solution to Problem 2.12).

Your answer should be a real PDA. Don't label transition arcs with short cuts such as $\mathbf{\epsilon}, \mathbf{T} \rightarrow \mathbf{b T b}$ if you expect full credit.

Pumping Lemma (Theorem 1.70)

If L is a context free language, then there is a number p (the pumping length) where, if s is any string in L of length at least p, then s may be divided into five pieces $s=u v x y z$, satisfying the following conditions:

- for each $i \geq 0, u v^{i} x y^{i} z \in A$
- $\quad|v|>0$ or $|y|>0$
- $|\mathrm{vxy}| \leq p$

Problem 4: Proving Context (20 points)

Show that the language $\left\{a^{\prime} b^{j} c^{k} \mid i \geq j\right.$ and $\left.i \geq k\right\}$ is not context free.
Note that aabbcc and aac are in, but abbc and cab are out.

Problem 5: Proving context (20 points)

Show that the language $\left\{a^{i} b^{j} c^{k} \mid i \geq j+k\right\}$ is context free. I strongly suggest you create a context free grammar to solve this problem.

Note that aaabbc and aaaab are in, but aaabbcc and abba are not.
You must add comments to your answer! I'll need them.

