
Problem 1: Regular and context free languages (20 points)
Fixed point numbers are sequences consisting of digits and a single period to
represent a few “real” numbers. The period should not be the first or last
character of the string. Here are some examples:

• 434.001
• 0.1
• 00.1
• 0.000

(Usually 1. and .1 would be allowed, but we are making the problem easier.)

Use the grep expression [0-9] in place of (0+1+2+3+4+5+6+7+8+9) in
your answers. It’s a lot easier to write.

Part A: Write a regular expression specifying fixed point numbers.

[0-9][0-9]*.[0-9][0-9]*

Part B: Write a context free grammar specifying fixed point numbers.

• S → D.D
• D → [0-9] | [0-9]D or D → [0-9] | DD

Part C: Using your grammar, draw a parse tree for the fixed point number
11.05 .

except this one is actually 11.01

Page 1 of 6

Problem 2: CFG ➜ CNF (20 points)
Convert the following Context Free Grammar to Chomsky Normal Form.

• The alphabet for the language is Σ = {a, b}.
• The start variable for the language is (as usual) S.

Here are the rules:
• S ➜ aTa | b
• T ➞ bTb | ϵ

Avoid creativity and stick with the procedure described in Example 2.10 of the
textbook as it was followed in last week’s class meetings.

Add S0 ➜ S
• S0 ➜ S
• S ➜ aTa | b
• T ➜ bTb | ε

Eliminate ϵ rules, in particular T ➜ ε, and add new rules with T replaced by ε
• S0 ➜ S
• S ➜ aTa | aa | b ;; often the aa was omitted
• T ➜ bTb | bb

Remove unit rule S0 ➜ S and replace S with with its targets.
• S0 ➜ aTa | aa | b
• S ➜ aTa | aa | b
• T ➜ bTb | bb

Get rid of unreachable S rule (not part of book’s algorithm)
• S0 ➜ aTa | aa | b
• T ➜ bTb | bb

Introduce variables for alphabet symbols a and b
• S0 ➜ ATA | AA | b
• T ➜ BTB | BB
• A ➜ a
• B ➜ b

Introduce variables for AT and BT
• S0 ➜ MA | AA | b
• T ➜ NB | BB
• M ➜ AT
• N ➜ BT
• A ➜ a
• B ➜ b

Many solutions were not in CNF! The right side can only be:
• One letter from the alphabet, such as A ➜ a
• Two variables, such as T ➜ NB
• ε, but only if the left hand side is the starting variable, as in S0 ➜ ε

Language: {amb2nam | m ≥ 1 & n ≥ 0} ∪ {b}

Page 2 of 6

Problem 3: CFG ➜ PDA (20 points)
Generate a PDA that accepts the Context Free Grammar of the previous problem:

• S ➜ aTa | b
• T ➞ bTb | ϵ

I suggest that you follow the flower algorithm presented in Theorem 2.20 of the
textbook (which you must have used for your solution to Problem 2.12).

Your answer should be a real PDA. Don't label transition arcs with short cuts such
as ϵ, T ➞ bTb if you expect full credit.

Anitra Griffin drew this

Page 3 of 6

Pumping Lemma (Theorem 1.70)
If L is a context free language, then there is a number p (the pumping length)
where, if s is any string in L of length at least p, then s may be divided into five
pieces s = uvxyz, satisfying the following conditions:

• for each i ≥ 0, uvixyiz ∈ A
• |v| > 0 or |y| > 0
• |vxy| ≤ p

Problem 4: Proving Context (20 points)

Show that the language {aibjck | i ≥ j and i ≥ k} is not context free.

Note that aabbcc and aac are in, but abbc and cab are out.

Assume p is the pumping length.
Let s be apbpcp which is divided into the uvxyz of the pumping lemma.
Important warning: If your s does not use p, you are doomed!
Case 1: either v or y contains two different alphabet element
Suppose that one of v or y contain two different alphabet elements. WLOG
assume v contains both a and b, i.e., v = ambn with m>0 and n>0. In the case,
pumping v once would yield some form of agbhaibkcp which is not in the language.
Case 2: v and y contain only one (or none) type of alphabet element.
Case 2A: either v or y contains one or more a’s
WLOG, assume v contains an a. In that case, pumping v down to zero, would
reduce the number of a’s but cannot reduce the number of c’s, because that is too
far away.) In that case, the number of a’s would be reduced, but the number of
either b’s or c’s would not. Therefore. the down-pumped string is not in the
language.
Case 2B: There are no a’s in either v or y
Then either v or y contains either b’s or c’s. WLOG, assume that y is a non-zero
section of b’s. In that case, pumping up will result in there being more b’s than
a’s. Therefore. the up-pumped string is not in the language.

apbpcp cannot be pumped: The language is not context free.

Page 4 of 6

Problem 5: Proving context (20 points)
Show that the language {aibjck | i ≥ j + k} is context free. I strongly suggest you
create a context free grammar to solve this problem.

Note that aaabbc and aaaab are in, but aaabbcc and abba are not.

You must add comments to your answer! I’ll need them.

Here is a context free grammar
• S ➜ aS | T
• T ➞ aTc | U
• U ➞ aUb | ε

It will be easier to rewrite aibjck where i ≥ j + k as au+j+kbjck where j ≥ 0,
k ≥ 0 and u ≥ 0, that is, set u to i-(j+k). Now do the following steps:

• Use the S ➜ aS rule u times to build up to auS
• Then use S ➜ T to get auT
• Now use T ➞ aTc k times to build up to au+jTck

• Then use T ➜ U to get to au+jUb
• Now use U ➞ aUc k times to build up to au+j+kUbjck

• Finally use U ➞ ε to get the desired au+j+kbjck

You could also use a PDA to demonstrate that the language is context
free. Here is the complicated PDA you’d get following the book’s CFG to
PDA algorithm.

Page 5 of 6

However, it would be possible to use a PDA similar to the ones in Figures
2.15 and 2.17 in the textbook.

It can be a little hard to argue how a PDA matches a language when
there are all those ε transition.

It is possible to implement this language with a determinate PDA which
would look like the following, though you really ought to add a trap
state.

Page 6 of 6

