
UNCA CSCI 235
Exam 2 Fall 2018 Solution

27 November 2018

This is a closed book and closed notes exam. Communication with anyone other than
the instructor is not allowed during the exam. Furthermore, calculators, cell phones,
and any other electronic or communication devices may not be used during this
exam. Anyone needing a break during the exam must leave their exam with the
instructor. Cell phones or computers may not be used during breaks.

This exam must be turned in before 6:55 PM.

Name:________________________________

Problem 1 (10 points) C expressions
In the left column, there are ten tricky and not-so tricky C expressions. Write
their values in the right column. Express your answers as simple base 10
expressions, such as 235 or -235. You may assume that all of these numbers
are stored in 16-bit two’s complement representation, the usual short.

0x64 100

050 40

19 && 0 0

19 & 27 19

19 ^ 27 8

37 * 2 / 10 7

19 >= 4 1

19 >> 4 1

19 | 4 23

(7 != 5) * 235 235

Problem 2 (4 points) Q4.4 to decimal conversion
Convert the following two Q4.4 two’s complement numbers (four fixed and
four fractional bits) into conventional decimal numbers.

10011001
-6.4375

00011000
1.5

Page 1 of 8

Problem 3 (4 points) Decimal to Q4.4 conversion
Convert the following two signed decimal numbers into Q4.4 two’s complement
numbers (four fixed and four fractional bits). If you can’t express the number
exactly, give the nearest Q4.4 representation.

-3.5
11001000

2.71828
00101011

Problem 4 (10 points) Adding numbers with flags
Add the following pairs of six-bit numbers. Based on the result of this addition, set
the four x86-64 status bits: CF (carry), OF (overflow), SF (sign) and ZF (zero).

 111011
+ 000101
 000000

CF_1, OF_0, SF_0, ZF_1

 010110
+ 000110
 011100

CF_0, OF_0, SF_0, ZF_0

 101111
+ 100000
 001111

CF_1, OF_1, SF_0, ZF_0

 011000
+ 001000
 100000

CF_0, OF_1, SF_1, ZF_0

Problem 5 (4 points) Range
What is the range of numbers that can be stored in 8-bit twos-complement
numbers? (The byte of Java is an 8-bit twos-complement number.)

-27 to 27-1 or -128 to 127

Problem 6 (4 point) Range
What is the range of numbers that can be stored in 16-bit unsigned numbers?
(The char of Java is a 16-bit unsigned number.)

0 to 216-1 or 0 to 65535

Page 2 of 8

Problem 7 (6 points) CSCI arithmetic
Perform the following operations and express the results as they should be for
CSCI 235 and other geeky environments. Use powers of 2!

 16 ki * 64 ki
24 * 210 * 26 * 210 = 230 = 1 Gi

 32 ki / 128
25 * 210 / 27 = 28 = 256

 log2(32 Gi)
 log2(25 * 230) = log2(235) = 35

Problem 8 (6 points) Compile and run
Suppose you have written the following program and stored it in a file named
prob8.c .

#include <stdio.h>
int main(int argc, char *argv[]) {
 printf("%s is %d\n", argv[2], argc) ;
 return 0 ;
}

What would be an appropriate Makefile for the program? Assume you want to
store the executable in the file prob8. I am giving you the first line of the
Makefile. You need to put in the others. Write your Makefile so that typing the
command make (with no arguments) will compile your program.

CFLAGS = -std=c99 -Wpedantic -Og -g

all: prob8

Now comes the tricky part of the riddle. Below is the start of a single command
typed from the command prompt. What command line arguments do you pass to
prob8 to make it print this single output line?

IV is 4
Just complete the command.

 ./prob8 a IV b

Page 3 of 8

Problem 9 (20 points) C Programming
Write a program that reads (using scanf) a bunch of highway “numbers” (a string
followed by a number) from a terminated standard input stream that are entered
as shown below.
 US 25 NC

694 I 26 NC 251
Your output should be a neatly formatted list of highways (one per line as shown
below) followed by a count of the number of NC highways. So, for the above
example, the output should something like
 US 25
 NC 694
 I 26
 NC 251
NC count: 2

#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[]) {

char routeType[100] ;
int routeNumber ;
int ncCount = 0 ;
while (scanf("%s%d", routeType, &routeNum)==2) {

printf("%5s %5d\n", routeType, routeNum) ;
if (!strcmp("NC", routeType)) {

++ncCount ;
}

}
printf("NC count: %7d\n", ncCount) ;

}

Page 4 of 8

Problem 10 (10 points) Boolean expression to truth table and circuit

First, fill in the truth table on the right below so that it corresponds to the
following Java (and C) expression:

X = !(A && B) && !C
If you prefer the computer engineering style, you can think of the equation as

X = (A B)’ C’

A B C X
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Second, draw a logic circuit (AND, OR, …) to implement the boolean expression
and corresponding truth table.

Page 5 of 8

Problem 11 (10 points) Truth table to Boolean expression and circuit

The truth table below specifies a Boolean function with three inputs, A, B, and C
and one output X.

A B C X
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

First, write a Boolean expression corresponding to the function specified in the
table. You do not need to write an “efficient” expression; however, ridiculously
complex expressions will not be given full credit.

A’ B’ C + A’ B C’ + A’ B C + A B’ C
or – with fewer transistors

A’ B + B’ C

Second, draw a logic circuit (AND, OR, ...) to implement the boolean expression
and corresponding truth table.

Page 6 of 8

Problem 12 (12 points)
In this question, you are to fill in boxes representing the following C integer or
pointer variables to show their values after each of seven sections of C code are
executed. You should consider all the sections as being independently
executed after the following declaration and initialization statements:

 int V[3] = {201, 235, 335} ;
 int *p = NULL ;
 int *q = NULL ;

As you might guess, null in Java is similar to NULL in C. Draw the value NULL with
a little X. Don’t ever just leave the pointer variable boxes empty.

 p = &V[1] ;
 q = &V[2] ;
 *p = 150 ;
 *q = V[1] + 200 ;

p &V[1] V[0] 201

V[1] 150

q &V[2] V[2] 350

 q = V ;
 p = q ;
 *p = 300 ;
 *q = 400 ;

p &V[0] V[0] 400

V[1] 235

q &V[0] V[2] 335

 p = &V[1] ;
 q = &V[2] ;
 *q = *(p++) ;
 *p = 13 ;

p &V[2] V[0] 201

V[1] 235

q &V[2] V[2] 13

 p = &V[0] ;
 q = &V[2] ;
 *q = (*p)++ ;

p &V[0] V[0] 202

V[1] 235

q &V[2] V[2] 201

Page 7 of 8

CSCI 255
Handy Table of Numbers

Powers of Two
20 1 210 1024

21 2 211 2048

22 4 212 4096 210 1 Ki

23 8 213 8192 220 1 Mi

24 16 214 16384 230 1 Gi

25 32 215 32768

26 64 216 65536

27 128 217 131072

28 256 218 262144

29 512 219 524288

Hex table
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Page 8 of 8

