Slides for “Data Mining”
by
I. H. Witten and E. Frank
Simplicity first

- Simple algorithms often work very well!
- There are many kinds of simple structure, eg:
 - One attribute does all the work
 - All attributes contribute equally & independently
 - A weighted linear combination might do
 - Instance-based: use a few prototypes
 - Use simple logical rules
- Success of method depends on the domain
Inferring rudimentary rules

- 1R: learns a 1-level decision tree
 - I.e., rules that all test one particular attribute

- Basic version
 - One branch for each value
 - Each branch assigns most frequent class
 - Error rate: proportion of instances that don’t belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate

(assumes nominal attributes)
Pseudo-code for 1R

For each attribute,
 For each value of the attribute, make a rule as follows:
 count how often each class appears
 find the most frequent class
 make the rule assign that class to this attribute-value
 Calculate the error rate of the rules
Choose the rules with the smallest error rate

Note: “missing” is treated as a separate attribute value
Evaluating the weather attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny → No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td>Overcast</td>
<td>Overcast → Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td>Rainy</td>
<td>Rainy → Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>Hot → No*</td>
<td>2/4</td>
<td>5/14</td>
</tr>
<tr>
<td>Humidity</td>
<td>High → No</td>
<td>3/7</td>
<td>4/14</td>
</tr>
<tr>
<td>Windy</td>
<td>False → Yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>True → No*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>

* indicates a tie
Dealing with numeric attributes

- Discretize numeric attributes
- Divide each attribute’s range into intervals
 - Sort instances according to attribute’s values
 - Place breakpoints where the class changes (the majority class)
- This minimizes the total error
- Example:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>85</td>
<td>85</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>80</td>
<td>90</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>83</td>
<td>86</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>75</td>
<td>80</td>
<td>False</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Temperature</th>
<th>Outlook</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>75</td>
<td>Sunny</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>85</td>
<td>75</td>
<td>Sunny</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>80</td>
<td>75</td>
<td>Rainy</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>80</td>
<td>75</td>
<td>Rainy</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>80</td>
<td>75</td>
<td>Rainy</td>
<td>False</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Humidity</th>
<th>Outlook</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>85</td>
<td>Sunny</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>85</td>
<td>85</td>
<td>Sunny</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>86</td>
<td>False</td>
<td>Overcast</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>80</td>
<td>False</td>
<td>Rainy</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

7
The problem of overfitting

- This procedure is very sensitive to noise
 - One instance with an incorrect class label will probably produce a separate interval
- Also: *time stamp* attribute will have zero errors
- Simple solution: *enforce minimum number of instances in majority class per interval*
- Example (with min = 3):

64	65	68	69	70	71	72	72	75	75	80	81	83	85								
Yes	No	Yes	Yes	Yes		No	No	Yes	Yes	Yes		No	Yes	Yes	No						

64	65	68	69	70	71	72	72	75	75	80	81	83	85								
Yes	No	Yes	Yes	Yes		No	No	Yes	Yes	Yes		No	Yes	Yes	No						
With overfitting avoidance

Resulting rule set:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny → No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Overcast → Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainy → Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>≤ 77.5 → Yes</td>
<td>3/10</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>> 77.5 → No*</td>
<td>2/4</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>≤ 82.5 → Yes</td>
<td>1/7</td>
<td>3/14</td>
</tr>
<tr>
<td></td>
<td>> 82.5 and ≤ 95.5 → No</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 95.5 → Yes</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>Windy</td>
<td>False → Yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>True → No*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>
Discussion of 1R

- 1R was described in a paper by Holte (1993)
 - Contains an experimental evaluation on 16 datasets (using cross-validation so that results were representative of performance on future data)
 - Minimum number of instances was set to 6 after some experimentation
 - 1R’s simple rules performed not much worse than much more complex decision trees

- Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets

Robert C. Holte, Computer Science Department, University of Ottawa
Covering algorithms

- Convert decision tree into a rule set
 - Straightforward, but rule set overly complex
 - More effective conversions are not trivial
- Instead, can generate rule set directly
 - for each class in turn find rule set that covers all instances in it (excluding instances not in the class)
- Called a covering approach:
 - at each stage a rule is identified that “covers” some of the instances
Example: generating a rule

If true
then class = a

If \(x > 1.2 \)
then class = a

Possible rule set for class “b”:

If \(x \leq 1.2 \) then class = b
If \(x > 1.2 \) and \(y \leq 2.6 \) then class = b

Could add more rules, get “perfect” rule set
Rules vs. trees

- Corresponding decision tree: (produces exactly the same predictions)
- But: rule sets can be more perspicuous when decision trees suffer from replicated subtrees
- Also: in multiclass situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account
Simple covering algorithm

- Generates a rule by adding tests that maximize rule’s accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
 - But: decision tree inducer maximizes overall purity
- Each new test reduces rule’s coverage:
Selecting a test

- **Goal:** maximize accuracy
 - t total number of instances covered by rule
 - p positive examples of the class covered by rule
 - $t - p$ number of errors made by rule
 - \Rightarrow Select test that maximizes the ratio p/t

- We are finished when $p/t = 1$ or the set of instances can’t be split any further
Example:
contact lens data

- Rule we seek:
 If ?
 then recommendation = hard

- Possible tests:

 Age = Young 2/8
 Age = Pre-presbyopic 1/8
 Age = Presbyopic 1/8
 Spectacle prescription = Myope 3/12
 Spectacle prescription = Hypermetrope 1/12
 Astigmatism = no 0/12
 Astigmatism = yes 4/12
 Tear production rate = Reduced 0/12
 Tear production rate = Normal 4/12
Modified rule and resulting data

Rule with best test added:

If astigmatism = yes
then recommendation = hard

Instances covered by modified rule:

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
</tbody>
</table>
Further refinement

- **Current state:**

  ```
  If astigmatism = yes
  and ?
  then recommendation = hard
  ```

- **Possible tests:**

 - Age = Young 2/4
 - Age = Pre-presbyopic 1/4
 - Age = Presbyopic 1/4
 - Spectacle prescription = Myope 3/6
 - Spectacle prescription = Hypermetrope 1/6
 - Tear production rate = Reduced 0/6
 - Tear production rate = Normal 4/6
Modified rule and resulting data

- Rule with best test added:

 If astigmatism = yes
 and tear production rate = normal
 then recommendation = hard

- Instances covered by modified rule:

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
</tbody>
</table>
Further refinement

- **Current state:**

 If astigmatism = yes
 and tear production rate = normal
 and ?
 then recommendation = hard

- **Possible tests:**

 Age = Young 2/2
 Age = Pre-presbyopic 1/2
 Age = Presbyopic 1/2
 Spectacle prescription = Myope 3/3
 Spectacle prescription = Hypermetrope 1/3

- **Tie between the first and the fourth test**
 - We choose the one with greater coverage
The result

- **Final rule:**

 \[
 \text{If astigmatism = yes} \\
 \text{and tear production rate = normal} \\
 \text{and spectacle prescription = myope} \\
 \text{then recommendation = hard}
 \]

- **Second rule for recommending “hard lenses”:**
 (built from instances not covered by first rule)

 \[
 \text{If age = young and astigmatism = yes} \\
 \text{and tear production rate = normal} \\
 \text{then recommendation = hard}
 \]

- **These two rules cover all “hard lenses”:**
 - Process is repeated with other two classes
Pseudo-code for PRISM

For each class C
 Initialize E to the instance set
While E contains instances in class C
 Create a rule R with an empty left-hand side that predicts class C
 Until R is perfect (or there are no more attributes to use) do
 For each attribute A not mentioned in R, and each value v,
 Consider adding the condition A = v to the left-hand side of R
 Select A and v to maximize the accuracy p/t
 (break ties by choosing the condition with the largest p)
 Add A = v to R
 Remove the instances covered by R from E
Rules vs. decision lists

- PRISM with outer loop removed generates a decision list for one class
 - Subsequent rules are designed for rules that are not covered by previous rules
 - But: order doesn’t matter because all rules predict the same class
- Outer loop considers all classes separately
 - No order dependence implied
- Problems: overlapping rules, default rule required
Separate and conquer

- Methods like PRISM (for dealing with one class) are *separate-and-conquer* algorithms:
 - First, identify a useful rule
 - Then, separate out all the instances it covers
 - Finally, “conquer” the remaining instances

- Difference to divide-and-conquer methods:
 - Subset covered by rule doesn’t need to be explored any further