CSCI 201 Spring 2004: Review for Final

Notes: (1) All exams are open book.

 (2) You should also study the material on previous class exams.

Problem 1

Answer the following questions concerning the code segment below:

 …

 1. StringTokenizer tokenizer;

 2. String line, name, file="inventory.dat";

 …

3. try {

 4. FileReader fr = new FileReader(file);

 5. BufferedReader inFile = new BufferedReader(fr);

 6. line = inFile.readLine();

 7. while (line != null) {

 8. tokenizer = new StringTokenizer(line);

 9. name = tokenizer.nextToken();

10.
 try {

 11.
 units = Integer.parseInt(tokenizer.nextToken());

 …

12.
 }

13.
 catch (NumberFormatException exception) {

14.

 System.out.println ("Error in input. Line ignored:");

15.
 }

 16. line = inFile.readLine();

 17. }

 …

1. What is the purpose of the catch and try blocks that begin on line 10 and end on line 15?

ANS: To catch the NumberFormatException exception that may be thrown by a statement in the try block. When that exception is caught, the message "Error in input. Line ignored:" is printed to the monitor.

2. Explain lines 4 and 5.

ANS: Create an input stream object whose source is the file named inventory.dat. The final input stream object is of type BufferedReader, and will have a method named readLine() that returns a complete line of text from the file each time it is called.

3. Explain line 6.

ANS: The method readLine() belonging to the object named inFile is called. It returns a line of text which is then stored in the String object named line.

4. Explain line 8.

ANS: A new StringTokenizer object is being created and its address is stored in the reference variable named tokenizer. The StringTokenizer constructor is called and given the address stored in line as input.

5. When will the while loop that begins on line 7 terminate?

ANS: When the end of file is reached.

Problem 2

What will be output by the program below?

import MyException;

public class Exception2

{
public static void main(String [] args) throws MyException

{
int x = 1, y = 0;

System.out.println("Starting the calculations");

int ans = calculations(x,y);

System.out.println("The answer is: " + ans);

}

public static int calculations(int x, int y) throws MyException

{
int ans = division(x,y);

return ans;

}

public static int division(int x, int y) throws MyException

{
int z = 0;

if(y==0) {

 MyException exceptionObj = new MyException("Division would be undefined");

 throw exceptionObj;

} else

 z = x/y;

return z;

}

}

ANS:

Starting the calculations

MyException: Division would be undefined

 at TestException.division(TestException.java:16)

 at TestException.calculations(TestException.java:10)

 at TestException.main(TestException.java:6)

Exception in thread "main"

Problem 3

What will be output by the program below?

public class Exception2

{
public static void main(String [] args)

{
int x = 1, y = 0;

System.out.println("Starting the calculations");

int ans = calculations(x,y);

System.out.println("The answer is: " + ans);

}

public static int calculations(int x, int y)

{
int ans = division(x,y);

return ans;

}

public static int division(int x, int y)

{
int z = 0;

try {

 if(y==0) {

 MyException eObj = new MyException("Division would be undefined");

 throw eObj;

 } else

 z = x/y;

}

catch(MyException e)

{ System.out.println("The exception message is: " + e.getMessage());

}

return z;

}

}

ANS:

Starting the calculations

The exception message is: Division would be undefined

The answer is: 0

Problem 4
Define/explain the following terms

1. an exception

ANS: An object that can cause your program to crash if it is not caught.

2. exception propagation

ANS: The process by which an exception moves (i.e., is thrown) up the call path.

3. System.out

ANS: out is a public instance variable in the System class. It is a reference to a PrintStream object.

4. System.in

 ANS: in is a public instance variable in the System class. It is a reference to an InputStream object.

Problem 5

1. Write a segment of code that creates a buffered input stream object that can be used to read text data from a file named “test.dat”. (Assume that the java.io package has already been imported.)

ANS:

FileReader fr = new FileReader (“test.dat”);

BufferedReader inFile = new BufferedReader (fr);

2. Extend the segment of code below to create a StringTokenizer object that can be used to tokenize (i.e., extract the individual words from) the String named bunchaWords.

import java.util.StringTokenizer;

public class IOtest {
 public static void main(String [] args) {
 String bunchaWords =

 ”This might be your last 201 final exam question”;

ANS:

import java.util.StringTokenizer;

public class IOtest {
 public static void main(String [] args) {
 String bunchaWords =

 ”This might be your last 201 final exam question”;

StringTokenizer tokenizer = new StringTokenizer (bunchaWords);

3. Extend the segment of code below to extract 101 from the String bunchaNumbers and store it in the integer variable courseNumber.

import java.util.StringTokenizer;

public class IOtest {
 public static void main(String [] args) {
 String bunchaNumbers = ”101 201 301 401”;

StringTokenizer tokenizer = new StringTokenizer(bunchaNumbers);

int courseNumber;

ANS:

import java.util.StringTokenizer;

public class IOtest {
 public static void main(String [] args) {
 String bunchaNumbers = ”101 201 301 401”;

StringTokenizer tokenizer = new StringTokenizer(bunchaNumbers);

int courseNumber = Integer.parseInt (tokenizer.nextToken());

4. The method readLine() defined in the BufferReader class returns the next line of text from a character input stream (such as a file) each time it is called. What does the method return when it reaches the end of a file (assuming that you are reading from that file)?

ANS: null

This can be described as a stack trace

