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The Bayesian Network Model
Probability basics:
� Bayes rule of conditional probability:

• The probability of event A, given event B is

P(A | B) = P(A � B) / P(B)

= P(A) � P(B | A) / P(B)

� The chain rule:
• By applying Bayes rule twice:

P(A � B � C) = P(A | B � C) � P(B | C) � P(C)

� Probabilistic independence:
• Definition: A and B are independent if P(A � B)  = P(A) � P(B).
• It follows that if A and B are independent, then P(A | B) = P(A). 

� Conditional independence: 
• P(A � B | C) = P(A | C) � P(B | C).
• Note: A � B will be denoted A,B.
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Bayesian Networks

� Bayesian network: directed acyclic graph (DAG) for illustrating 
causal relationships among variables.  In a Bayesian network:
• Nodes represent random variables.

• An edge from node Y (parent) to node X (child) represents a dependence 
between these variables.

• Each node X is associated with conditional probability P(X | Y1, …, Yn), 
expressing the strength of the dependence of X on its parents Y1, …, Yn.

• A node does not depend on any nodes but its parents; i.e., if X is parent of 
Y and Y is parent on Z, then P(Z | X,Y) = P(Z | Y).
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Bayesian Networks (cont.)

� Example of a Bayesian network:
• P(X1) is prior probability.

• Example of conditional probability:

Assume X2 may have two values: lo, hi,

assume X3 may have two values yes, no,

and X4 may have three values: 10, 20, 30.

Then P(X4 | X2,X3) is expressed in a table such as

• The joint probability P(X1, X2, X3 ,X4, X5) = 

P(X1) � P(X2 | X1 ) � P(X3 | X1 ) � P(X4 | X2, X3 ) � P(X5 | X3)

x 2

x 1

x 3

x 4 x 5

0.3

0.2

0.5

lo,no

0.2

0.5

0.3

hi,yes

0.4

0.1

0.5

hi,no

0.330

0.320

0.410

lo,yes
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Bayesian Networks (cont.)

� Purpose: Compute other probabilities.  For example, 
• Prediction: Given P(X1=a) (the probability that random variable X1 attains 

a certain value), we could calculate the probability P(X4=b) (the 
probability that random variable X4 attains a certain value).

• Diagnostics: Given P(X4 =b) (the probability that random variable X4

attains a certain value), we can calculate the probability P(X1 =a) (the 
probability that random variable X1 attains a certain value), 
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Bayesian Networks (cont.)

� Simple example of a Bayesian network:
• B: There is a burglary.
• A: The alarm goes off.
• The prior probability of a burglary is known: P(B) = 0.0001. 
• The conditional probability of an alarm given a burglary is known:

P(A | B) =

• The probability of the alarm going off is (marginalization):
P(A) = 0.95 � 0.0001 + 0.01 � 0.9999 = 0.01

• We can compute the posterior probability that there is a burglary if the 
alarm goes off:
P(B | A) = P(A | B) � P(B) / P(A) = 0.95  � 0.0001 / 0.01 = 0.0095 
(about 95 times higher than the prior probability of a burglary).

B A

0.99

0.01

No burglary

0.99

0.01

Marginal 
Probability

0.05No alarm

0.95Alarm

Burglary
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Bayesian Networks for IR

Bayesian networks for information retrieval:

� A node for every term ki, document dj, and query q.

� Two types of edges:
• Edge from document dj to term ki: Term ki appears in (is relevant to) 

document dj.

• Edge from term ki to query q: Term ki appears in (is relevant to) query q.

� A three level network: 

documents, terms and queries.

� P(q, dj): The probability of a match 

between a query q and a document dj 

(used for ranking).

dj

q

k1 k2 kt�
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Bayesian Networks for IR (cont.)

� Calculating ranking:

• Arguments applied in this derivation:
o Basic conditioning: When Bi are disjoint and exhaust all the possibilities

then P(A)=� P(A | Bi) � P(Bi).

o Bayes rule (3 times).

o A node does not depend on a grandparent: 

P(q | d, k1, …, kt) = P(q | k1, …, kt).
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Bayesian Networks for IR (cont.)

� Assumption of term independence:

• The first product is for the terms ki that appear (1) in k1, …, kt. 

• The second product is for the terms ki that do not appear (0) in k1, …, kt. 

� Altogether,
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Bayesian Networks for IR (cont.)

� We provide 
• The prior probability P(dj)

• The conditional probabilities P(ki | dj)

• The posterior probabilities P(q | k1, …, kt) 

� We then derive
• The final ranking P(q, dj)
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Bayesian Networks for IR (cont.)

� The prior probability P(dj) is the probability of a document; either
• Uniform distribution: P(dj) = 1/n (where n is the size of the collection).

• Normalized: P(dj) = 1/|dj| (adjust by the norm, as in the vector model).

� The conditional probability P(ki | dj) is the relevance of term ki to 
document dj; either
• A binary value: 1 if ki appears in dj, 0 otherwise (as in the Boolean model).

• A weight: based on the term frequency fi,j (as in the vector model).

� The posterior probability P(q | k1, …, kt) is the relevance of term 
ki to query q; either
• A binary value: 1 if the binary vector k1, …, kt corresponds exactly to the 

query terms, 0 otherwise.

• A weight: based on the inverse document frequency idfi  (as in the vector 
model).
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Example

� We shall consider only the case of uniform priors, weighted
conditionals, and binary posteriors.

� Example 
• A total of 10 documents (n = 10).
• A total of 4 terms (t = 4): a, b, c, d.
• A specific document d7 has these terms 

P(a | d7) = 0.6, P(b | d7) = 0.8, P(c | d7) = 0.4, 
P(d | d7) = 0.

• A (Boolean) query q specifies these terms: a, c.
• The prior probability is P(d7) = 0.1.
• The posterior probabilities: 

P(q | (1,0,1,0)) = 1 (the other 15 posteriors are 0).
• We can now calculate the ranking P(q, d7).

d7

q

a b dc

1 1

0.6 0.8

0 0

0.4 0
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Example (cont.)
� Example (cont.)

• The summation is over 16 possible term vectors, but the only vector with 
a non-zero posterior probability is 1,0,1,0.

• The contribution of the terms: 0.6 · (1 – 0.8) · 0.4  · (1 – 0) = 0.048.
o For desired terms (such as a and c), the stronger their weight in the 

document, the higher the final ranking!

o For undesired terms (such as b and d), the stronger their weight in the 
document, the lower the ranking! 

• The final relevance (ranking) of d7 to q is 
o P(q, d7). = 0.1 · 0.048 = 0.0048.

• Assume now another document d8 with term weights exactly as given in 
q: P(a | d8) = 1, P(b | d8) = 0, P(c | d8) = 1, P(d | d8) = 0.                            

Then the contribution of the terms is maximal: 1 · (1 – 0) · 1  · (1 – 0) = 1.

And the final ranking is 
o P(q, d8) = 0.1 · 1 = 0.1.

• The uniform prior 1/n may be ignored as it affects all rankings equally.



Fall 2001 INFS-623: Information Retrieval 
Models

35

Example (cont.)

� Until now we assumed queries are simple conjunctions of terms. 
• In the example, q = (a � c).

� Assume now queries are disjunctions of such conjuncts.
• For example, q = (a � c) � (a � b).

� The posterior probability P(q | k1, …, kt) would be defined as     
1 for any vector that corresponds to a conjunct, and 0 otherwise.
• In this example, P(q | (1,0,1,0)) = 1 and P(q | (1,1,0,0)) = 1

(the other 14 posteriors are 0).
• This results in two non-zero components:

o 0.6 · (1 – 0.8) · 0.4 · (1 – 0) = 0.048
o 0.6 · 0.8 · (1 – 0.4) · (1 – 0) = 0.288

• And the overall ranking of d7 with respect to this new query: 
o P(q, d7) = 0.1 · (0.048 + 0.288) = 0.0336




