The Bayesian Network Model

Probability basics:

- ✓ *Bayes rule* of conditional probability:
 - The probability of event A, given event B is

 $P(A \mid B) = P(A \land B) / P(B)$

 $= P(A) \cdot P(B \mid A) / P(B)$

✓ The *chain* rule:

- By applying *Bayes rule* twice: $P(A \land B \land C) = P(A \mid B \land C) \cdot P(B \mid C) \cdot P(C)$
- ✓ *Probabilistic independence*:
 - *Definition:* A and B are independent if $P(A \land B) = P(A) \cdot P(B)$.
 - It follows that if A and B are independent, then P(A | B) = P(A).

✓ Conditional independence:

- $P(A \land B \mid C) = P(A \mid C) \cdot P(B \mid C).$
- *Note*: $A \land B$ will be denoted A,B.

Bayesian Networks

- ✓ Bayesian network: directed acyclic graph (DAG) for illustrating causal relationships among variables. In a Bayesian network:
 - Nodes represent random variables.
 - An edge from node *Y* (parent) to node *X* (child) represents a dependence between these variables.
 - Each node X is associated with *conditional probability* $P(X | Y_1, ..., Y_n)$, expressing the *strength* of the dependence of X on its parents $Y_1, ..., Y_n$.
 - A node does not depend on any nodes but its parents; i.e., if X is parent of Y and Y is parent on Z, then P(Z | X, Y) = P(Z / Y).

Bayesian Networks (cont.)

- ✓ Example of a Bayesian network:
 - $P(X_1)$ is *prior* probability.
 - Example of conditional probability: Assume X₂ may have two values: *lo*, *hi*, assume X₃ may have two values *yes*, *no*, and X₄ may have three values: 10, 20, 30. Then P(X₄ | X₂,X₃) is expressed in a table such as

	lo,yes	lo,no	hi,yes	hi,no
10	0.4	0.5	0.3	0.5
20	0.3	0.2	0.5	0.1
30	0.3	0.3	0.2	0.4

• The *joint* probability $P(X_1, X_2, X_3, X_4, X_5) =$ $P(X_1) \cdot P(X_2 | X_1) \cdot P(X_3 | X_1) \cdot P(X_4 | X_2, X_3) \cdot P(X_5 | X_3)$

Bayesian Networks (cont.)

✓ *Purpose*: Compute other probabilities. For example,

- *Prediction*: Given $P(X_1=a)$ (the probability that random variable X_1 attains a certain value), we could calculate the probability $P(X_4=b)$ (the probability that random variable X_4 attains a certain value).
- *Diagnostics*: Given $P(X_4=b)$ (the probability that random variable X_4 attains a certain value), we can calculate the probability $P(X_1=a)$ (the probability that random variable X_1 attains a certain value),

Bayesian Networks (cont.)

- ✓ Simple example of a Bayesian network:
 - *B*: There is a burglary.
 - *A*: The alarm goes off.
 - The prior probability of a burglary is known: P(B) = 0.0001.
 - The conditional probability of an alarm given a burglary is known: $P(A \mid B) =$ Burglary No burglary Marginal

	Durgiary	No burgiary	Probability
Alarm	0.95	0.01	0.01
No alarm	0.05	0.99	0.99

- The probability of the alarm going off is (marginalization): $P(A) = 0.95 \cdot 0.0001 + 0.01 \cdot 0.9999 = 0.01$
- We can compute the posterior probability that there is a burglary if the alarm goes off:

 $P(B | A) = P(A | B) \cdot P(B) / P(A) = 0.95 \cdot 0.0001 / 0.01 = 0.0095$

(about 95 times higher than the prior probability of a burglary).

Bayesian Networks for IR

Bayesian networks for information retrieval:

- ✓ A node for every term k_i , document d_j , and query q.
- ✓ Two types of edges:
 - Edge from document d_j to term k_i : Term k_i appears in (is relevant to) document d_j .
 - Edge from term k_i to query q: Term k_i appears in (is relevant to) query q.
- ✓ A three level network:

documents, terms and queries.

 ✓ P(q, d_j): The probability of a match between a query q and a document d_j (used for *ranking*).

✓ Calculating ranking:
$$P(q, d_j) = \sum_{\forall \vec{k}} P((q, d_j) | k_1, ..., k_t) \cdot P(k_1, ..., k_t)$$

$$= \sum_{\forall \vec{k}} P(q, d_j, k_1, ..., k_t) =$$

$$= \sum_{\forall \vec{k}} P(q | (d_j, k_1, ..., k_t)) \cdot P(d_j, k_1, ..., k_t)$$

$$= \sum_{\forall \vec{k}} P(q | k_1, ..., k_t) \cdot P(k_1, ..., k_t | d_j) \cdot P(d_j)$$

- Arguments applied in this derivation:
 - Basic conditioning: When B_i are disjoint and exhaust all the possibilities then $P(A)=\sum P(A | B_i) \cdot P(B_i)$.
 - o Bayes rule (3 times).
 - A node does not depend on a grandparent: $P(q \mid d, k_1, ..., k_t) = P(q \mid k_1, ..., k_t).$

✓ Assumption of term independence:

 $P(k_1,...,k_t \mid d_j) = \prod_{i \mid k_i=1} P(k_i \mid d_j) \cdot \prod_{i \mid k_i=0} (1 - P(k_i \mid d_j))$

- The first product is for the terms k_i that appear (1) in k_1, \ldots, k_t .
- The second product is for the terms k_i that do not appear (0) in k_1, \ldots, k_t .
- \checkmark Altogether,

$$P(q, d_j) = P(d_j) \cdot \sum_{\forall \vec{k}} P(q \mid k_1, ..., k_t) \cdot \prod_{i \mid k_i = 1} P(k_i \mid d_j) \cdot \prod_{i \mid k_i = 0} (1 - P(k_i \mid d_j))$$

- \checkmark We provide
 - The *prior* probability $P(d_j)$
 - The *conditional* probabilities $P(k_i | d_j)$
 - The *posterior* probabilities $P(q | k_1, ..., k_t)$
- \checkmark We then derive
 - The final ranking $P(q, d_j)$

✓ The *prior* probability $P(d_j)$ is the probability of a document; either

- Uniform distribution: $P(d_j) = 1/n$ (where *n* is the size of the collection).
- *Normalized:* $P(d_j) = 1/|d_j|$ (adjust by the *norm*, as in the vector model).
- ✓ The *conditional* probability *P*(*k_i* | *d_j*) is the relevance of term *k_i* to document *d_j*; either
 - A binary value: 1 if k_i appears in d_j , 0 otherwise (as in the Boolean model).
 - *A weight:* based on the term frequency $f_{i,j}$ (as in the vector model).
- ✓ The *posterior* probability $P(q | k_1, ..., k_t)$ is the relevance of term k_i to query q; either
 - A *binary value*: 1 if the binary vector $k_1, ..., k_t$ corresponds exactly to the query terms, 0 otherwise.
 - *A weight*: based on the inverse document frequency idf_i (as in the vector model).

Example

- ✓ We shall consider only the case of *uniform* priors, *weighted* conditionals, and *binary* posteriors.
- ✓ Example
 - A total of 10 documents (n = 10).
 - A total of 4 terms (t = 4): a, b, c, d.
 - A specific document d₇ has these terms
 P(a | d₇) = 0.6, P(b | d₇) = 0.8, P(c | d₇) = 0.4,
 P(d | d₇) = 0.
 - A (Boolean) query q specifies these terms: a, c.
 - The prior probability is $P(d_7) = 0.1$.
 - The posterior probabilities: $P(q \mid (1,0,1,0)) = 1$ (the other 15 posteriors are 0).
 - We can now calculate the ranking $P(q, d_7)$.

Example (cont.)

✓ Example (cont.)

- The summation is over 16 possible term vectors, but the only vector with a non-zero posterior probability is 1,0,1,0.
- The contribution of the terms: $0.6 \cdot (1 0.8) \cdot 0.4 \cdot (1 0) = 0.048$.
 - For desired terms (such as *a* and *c*), the stronger their weight in the document, the higher the final ranking!
 - For undesired terms (such as *b* and *d*), the stronger their weight in the document, the lower the ranking!
- The final relevance (ranking) of d_7 to q is

o $P(q, d_7) = 0.1 \cdot 0.048 = 0.0048.$

Assume now another document d₈ with term weights *exactly* as given in q: P(a | d₈) = 1, P(b | d₈) = 0, P(c | d₈) = 1, P(d | d₈) = 0.
Then the contribution of the terms is maximal: 1 ⋅ (1 − 0) ⋅ 1 ⋅ (1 − 0) = 1. And the final ranking is

o $P(q, d_8) = 0.1 \cdot 1 = 0.1.$

• The uniform prior 1/n may be ignored as it affects all rankings equally.

Example (cont.)

 \checkmark Until now we assumed queries are simple conjunctions of terms.

- In the example, $q = (a \land c)$.
- ✓ Assume now queries are *disjunctions* of such conjuncts.
 - For example, $q = (a \land c) \lor (a \land b)$.
- ✓ The posterior probability $P(q | k_1, ..., k_t)$ would be defined as 1 for any vector that corresponds to a conjunct, and 0 otherwise.
 - In this example, $P(q \mid (1,0,1,0)) = 1$ and $P(q \mid (1,1,0,0)) = 1$ (the other 14 posteriors are 0).
 - This results in two non-zero components:
 - o $0.6 \cdot (1 0.8) \cdot 0.4 \cdot (1 0) = 0.048$
 - o $0.6 \cdot 0.8 \cdot (1 0.4) \cdot (1 0) = 0.288$
 - And the overall ranking of d_7 with respect to this new query:
 - o $P(q, d_7) = 0.1 \cdot (0.048 + 0.288) = 0.0336$