The Bayesian Network Model

Probability basics:
\checkmark Bayes rule of conditional probability:

- The probability of event A, given event B is

$$
\begin{aligned}
P(A \mid B) & =P(A \wedge B) / P(B) \\
& =P(A) \cdot P(B \mid A) / P(B)
\end{aligned}
$$

\checkmark The chain rule:

- By applying Bayes rule twice:

$$
P(A \wedge B \wedge C)=P(A \mid B \wedge C) \cdot P(B \mid C) \cdot P(C)
$$

\checkmark Probabilistic independence:

- Definition: A and B are independent if $P(A \wedge B)=P(A) \cdot P(B)$.
- It follows that if A and B are independent, then $P(A \mid B)=P(A)$.
\checkmark Conditional independence:
- $P(A \wedge B \mid C)=P(A \mid C) \cdot P(B \mid C)$.
- Note: $A \wedge B$ will be denoted A, B.

Bayesian Networks

\checkmark Bayesian network: directed acyclic graph (DAG) for illustrating causal relationships among variables. In a Bayesian network:

- Nodes represent random variables.
- An edge from node Y (parent) to node X (child) represents a dependence between these variables.
- Each node X is associated with conditional probability $P\left(X \mid Y_{1}, \ldots, Y_{n}\right)$, expressing the strength of the dependence of X on its parents Y_{1}, \ldots, Y_{n}.
- A node does not depend on any nodes but its parents; i.e., if X is parent of Y and Y is parent on Z, then $P(Z \mid X, Y)=P(Z \mid Y)$.

Bayesian Networks (cont.)

\checkmark Example of a Bayesian network:

- $P\left(X_{1}\right)$ is prior probability.
- Example of conditional probability:

Assume X_{2} may have two values: lo, hi, assume X_{3} may have two values yes, no, and X_{4} may have three values: $10,20,30$.

Then $P\left(X_{4} \mid X_{2}, X_{3}\right)$ is expressed in a table such as

	lo,yes	lo,no	hi,yes	hi,no
10	0.4	0.5	0.3	0.5
20	0.3	0.2	0.5	0.1
30	0.3	0.3	0.2	0.4

- The joint probability $P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=$

$$
P\left(X_{1}\right) \cdot P\left(X_{2} \mid X_{1}\right) \cdot P\left(X_{3} \mid X_{1}\right) \cdot P\left(X_{4} \mid X_{2}, X_{3}\right) \cdot P\left(X_{5} \mid X_{3}\right)
$$

Bayesian Networks (cont.)

\checkmark Purpose: Compute other probabilities. For example,

- Prediction: Given $P\left(X_{1}=a\right)$ (the probability that random variable X_{1} attains a certain value), we could calculate the probability $P\left(X_{4}=b\right)$ (the probability that random variable X_{4} attains a certain value).
- Diagnostics: Given $P\left(X_{4}=b\right)$ (the probability that random variable X_{4} attains a certain value), we can calculate the probability $P\left(X_{1}=a\right)$ (the probability that random variable X_{1} attains a certain value),

Bayesian Networks (cont.)

\checkmark Simple example of a Bayesian network:

- B : There is a burglary.

- A : The alarm goes off.
- The prior probability of a burglary is known: $P(B)=0.0001$.
- The conditional probability of an alarm given a burglary is known:

$P(A \mid B)=$		Burglary	No burglary	Marginal Probability
	Alarm	0.95	0.01	0.01
	No alarm	0.05	0.99	0.99

- The probability of the alarm going off is (marginalization):
$P(A)=0.95 \cdot 0.0001+0.01 \cdot 0.9999=0.01$
- We can compute the posterior probability that there is a burglary if the alarm goes off:
$P(B \mid A)=P(A \mid B) \cdot P(B) / P(A)=0.95 \cdot 0.0001 / 0.01=0.0095$ (about 95 times higher than the prior probability of a burglary).

Bayesian Networks for IR

Bayesian networks for information retrieval:
\checkmark A node for every term k_{i}, document d_{j}, and query q.
\checkmark Two types of edges:

- Edge from document d_{j} to term k_{i} : Term k_{i} appears in (is relevant to) document d_{j}.
- Edge from term k_{i} to query q : Term k_{i} appears in (is relevant to) query q.
\checkmark A three level network: documents, terms and queries.
$\checkmark P\left(q, d_{j}\right)$: The probability of a match between a query q and a document d_{j} (used for ranking).

Bayesian Networks for IR (cont.)

\checkmark Calculating ranking: $P\left(q, d_{j}\right)=\sum_{\forall \vec{k}} P\left(\left(q, d_{j}\right) \mid k_{1}, \ldots, k_{t}\right) \cdot P\left(k_{1}, \ldots, k_{t}\right)$

$$
\begin{aligned}
& =\sum_{\forall \vec{k}} P\left(q, d_{j}, k_{1}, \ldots k_{t}\right)= \\
& =\sum_{\forall \vec{k}} P\left(q \mid\left(d_{j}, k_{1}, \ldots, k_{t}\right)\right) \cdot P\left(d_{j}, k_{1}, \ldots, k_{t}\right) \\
& =\sum_{\forall \vec{k}} P\left(q \mid k_{1}, \ldots, k_{t}\right) \cdot P\left(k_{1}, \ldots, k_{t} \mid d_{j}\right) \cdot P\left(d_{j}\right)
\end{aligned}
$$

- Arguments applied in this derivation:
o Basic conditioning: When B_{i} are disjoint and exhaust all the possibilities then $P(A)=\Sigma P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)$.
- Bayes rule (3 times).
o A node does not depend on a grandparent:

$$
P\left(q \mid d, k_{1}, \ldots, k_{t}\right)=P\left(q \mid k_{1}, \ldots, k_{t}\right) .
$$

Bayesian Networks for IR (cont.)

\checkmark Assumption of term independence:

$$
P\left(k_{1}, \ldots k_{t} \mid d_{j}\right)=\prod_{i k_{i}=1} P\left(k_{i} \mid d_{j}\right) \cdot \prod_{i k_{i}=0}\left(1-P\left(k_{i} \mid d_{j}\right)\right)
$$

- The first product is for the terms k_{i} that appear (1) in k_{1}, \ldots, k_{t}.
- The second product is for the terms k_{i} that do not appear (0) in k_{1}, \ldots, k_{t}.
\checkmark Altogether,

$$
P\left(q, d_{j}\right)=P\left(d_{j}\right) \cdot \sum_{\forall \vec{k}} P\left(q \mid k_{1}, \ldots, k_{t}\right) \cdot \prod_{i k_{i}=1} P\left(k_{i} \mid d_{j}\right) \cdot \prod_{i k_{k}=0}\left(1-P\left(k_{i} \mid d_{j}\right)\right)
$$

Bayesian Networks for IR (cont.)

\checkmark We provide

- The prior probability $P\left(d_{j}\right)$
- The conditional probabilities $P\left(k_{i} \mid d_{j}\right)$
- The posterior probabilities $P\left(q \mid k_{1}, \ldots, k_{t}\right)$
\checkmark We then derive
- The final ranking $P\left(q, d_{j}\right)$

Bayesian Networks for IR (cont.)

\checkmark The prior probability $P\left(d_{j}\right)$ is the probability of a document; either

- Uniform distribution: $P\left(d_{j}\right)=1 / n$ (where n is the size of the collection).
- Normalized: $P\left(d_{j}\right)=1 /\left|d_{j}\right|$ (adjust by the norm, as in the vector model).
\checkmark The conditional probability $P\left(k_{i} \mid d_{j}\right)$ is the relevance of term k_{i} to document d_{j}; either
- A binary value: 1 if k_{i} appears in $d_{j}, 0$ otherwise (as in the Boolean model).
- A weight: based on the term frequency $f_{i, j}$ (as in the vector model).
\checkmark The posterior probability $P\left(q \mid k_{1}, \ldots, k_{t}\right)$ is the relevance of term k_{i} to query q; either
- A binary value: 1 if the binary vector k_{1}, \ldots, k_{t} corresponds exactly to the query terms, 0 otherwise.
- A weight: based on the inverse document frequency $i d f_{i}$ (as in the vector model).

Example

\checkmark We shall consider only the case of uniform priors, weighted conditionals, and binary posteriors.
\checkmark Example

- A total of 10 documents $(n=10)$.
- A total of 4 terms $(t=4): a, b, c, d$.
- A specific document d_{7} has these terms $P\left(a \mid d_{7}\right)=0.6, P\left(b \mid d_{7}\right)=0.8, P\left(c \mid d_{7}\right)=0.4$, $P\left(d \mid d_{7}\right)=0$.
- A (Boolean) query q specifies these terms: a, c.
- The prior probability is $P\left(d_{7}\right)=0.1$.
- The posterior probabilities:
 $P(q \mid(1,0,1,0))=1$ (the other 15 posteriors are 0).
- We can now calculate the ranking $P\left(q, d_{7}\right)$.

Example (cont.)

\checkmark Example (cont.)

- The summation is over 16 possible term vectors, but the only vector with a non-zero posterior probability is $1,0,1,0$.
- The contribution of the terms: $0.6 \cdot(1-0.8) \cdot 0.4 \cdot(1-0)=0.048$.
o For desired terms (such as a and c), the stronger their weight in the document, the higher the final ranking!
o For undesired terms (such as b and d), the stronger their weight in the document, the lower the ranking!
- The final relevance (ranking) of d_{7} to q is
o $\quad P\left(q, d_{7}\right) .=0.1 \cdot 0.048=0.0048$.
- Assume now another document d_{8} with term weights exactly as given in $q: P\left(a \mid d_{8}\right)=1, P\left(b \mid d_{8}\right)=0, P\left(c \mid d_{8}\right)=1, P\left(d \mid d_{8}\right)=0$.
Then the contribution of the terms is maximal: $1 \cdot(1-0) \cdot 1 \cdot(1-0)=1$.
And the final ranking is

$$
\text { o } \quad P\left(q, d_{8}\right)=0.1 \cdot 1=0.1
$$

- The uniform prior $1 / n$ may be ignored as it affects all rankings equally.

Example (cont.)

\checkmark Until now we assumed queries are simple conjunctions of terms.

- In the example, $q=(a \wedge c)$.
\checkmark Assume now queries are disjunctions of such conjuncts.
- For example, $q=(a \wedge c) \vee(a \wedge b)$.
\checkmark The posterior probability $P\left(q \mid k_{1}, \ldots, k_{t}\right)$ would be defined as 1 for any vector that corresponds to a conjunct, and 0 otherwise.
- In this example, $P(q \mid(1,0,1,0))=1$ and $P(q \mid(1,1,0,0))=1$ (the other 14 posteriors are 0).
- This results in two non-zero components:
o $\quad 0.6 \cdot(1-0.8) \cdot 0.4 \cdot(1-0)=0.048$
o $\quad 0.6 \cdot 0.8 \cdot(1-0.4) \cdot(1-0)=0.288$
- And the overall ranking of d_{7} with respect to this new query:
o $\quad P\left(q, d_{7}\right)=0.1 \cdot(0.048+0.288)=0.0336$

