The Bayesian Network Modéel

Probability basics:
v Bayesrule of conditional probability:
» The probability of event A, givenevent B is
P(A|B) =P(AAB)/P(B)
= P(A) - P(B|A) / P(B)
v Thechainrule:
* By applying Bayesrule twice:
PAABAC)=PA|BAC)-P(B|C)-P(C)
v" Probabilistic independence:
» Definition: A and B are independent if P(A A B) = P(A) - P(B).

« |tfollowsthat if A and B are independent, then P(A | B) = P(A).

v" Conditional independence:
« PAANB|C)=P(A|C)-P(B|C).
* Note: A A B will be denoted A,B.
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Bayesian Networks

v’ Bayesian network: directed acyclic graph (DAG) for illustrating
causal relationships among variables. In a Bayesian network:
* Nodes represent random variables.

 AnedgefromnodeY (parent) to node X (child) represents a dependence
between these variables.

» Each node X is associated with conditional probability P(X| Y, ..., Yn),
expressing the strength of the dependence of X onitsparents Yy, ..., Ya,

» A node does not depend on any nodes but its parents; i.e., if X is parent of
YandYisparenton Z, then P(Z| X,)Y) =P(Z| Y).
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Bayesian Networks (cont.)

v' Example of a Bayesian network:

o P(Xy) isprior probability.

* Example of conditional probability:
Assume X, may have two values: |0, hi,
assume Xz may have two values yes, no,
and X4 may have three values. 10, 20, 30.
Then P(X4 | X2 X3) isexpressed ina table such as

lo,yes lo,no hi,yes hi,no
10 0.4 0.5 0.3 0.5
20 0.3 0.2 0.5 0.1
30 0.3 0.3 0.2 0.4

* Thejoint probability P(X1, X2, X3,Xa, Xs5) =
P(Xl) ’ P(X2| Xl) ) P(X3| Xl) ) P(X4| Xz’ Xs) ) P(X5| Xs)
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Bayesian Networks (cont.)

v' Purpose: Compute other probabilities. For example,

* Prediction: Given P(X;=a) (the probability that random variable X; attains
acertain value), we could calculate the probability P(Xs=b) (the
probability that random variable X, attains a certain value).

* Diagnostics. Given P(Xs=Db) (the probability that random variable X4
attains a certain value), we can calculate the probability P(X; =a) (the
probability that random variable X; attains a certain value),

Fall 2001 INFS-623: Information Retrieval 26
Models



Bayesian Networks (cont.)

v Simple example of a Bayesian network: Q
B (&)

B: Thereisaburglary.

A: The alarm goes off.

The prior probability of aburglary is known: P(B) = 0.0001.

The conditional probability of an alarm given aburglary is known:

P(A | B) = Burglary No burglary = Margina
Probability
Alarm 0.95 0.01 0.01
Noaam  0.05 0.99 0.99

The probability of the alarm going off is (marginalization):
P(A) =0.95-0.0001 + 0.01 - 0.9999 = 0.01

We can compute the posterior probability that there isaburglary if the
alarm goes off:

P(B|A) =P(A|B)-P(B)/P(A) =0.95 -0.0001/0.01 =0.0095
(about 95 times higher than the prior probability of a burglary).
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Bayesian Networks for IR

Bayesian networks for information retrieval.
v A node for every term ki, document d;, and query q.

v Two types of edges:

« Edge from document d; to term ki: Term k; appearsin (is relevant to)
document d.

 Edgefromtermk; to query g: Term k; appearsin (is relevant to) query a.
v A threelevel network:
documents, terms and queries.
v P(q, di): The probability of amatch
between a query g and a document d
(used for ranking).
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Bayesian Networks for IR (cont.)

v' Calculating ranking: P(q,d) = > P((q,d)ks,....k)(P(ks,..., k)

=" P(q,d;, ky,..k) =
Ok

» Arguments applied in this derivation:
o Basic conditioning: When B; are digoint and exhaust all the possibilities
then P(A)=X P(A | B) - P(B).
o Bayesrule (3times).
o A node does not depend on a grandparent:
P@]|d, Kk, ... k) =P(q ki, ..., k).
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Bayesian Networks for IR (cont.)

v Assumption of term independence:
P(ky,...k|d) = ”L‘llp(lq |d) O @Q-P(ki[d))

ilki=0
 Thefirst product isfor the termsk; that appear (1) in ks, ..., k.
» The second product isfor the termsk; that do not appear (0) in kg, ..., k.

v' Altogether,
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Bayesian Networks for IR (cont.)

v' We provide

e Theprior probability P(d))

» The conditional probabilities P(k; | di)

« The posterior probabilities P(q | ki, ..., ki)
v We then derive

« Thefinal ranking P(q, d)
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Bayesian Networks for IR (cont.)

v The prior probability P(d) isthe probability of a document; either
« Uniformdistribution: P(d;) = 1/n (where n is the size of the collection).
« Normalized: P(d;) = V/|di| (adjust by the norm, as in the vector model).

v" The conditional probability P(ki | d) isthe relevance of term k; to
document di; either

 Abinaryvalue: 1if ki appearsin d;, O otherwise (asin the Boolean moded!).
« Aweight: based on the term frequency fi; (asin the vector mode!).

v The posterior probability P(q | ki, ..., k) isthe relevance of term
ki to query q; either

* A binaryvalue: 1if the binary vector k, ..., ki corresponds exactly to the
query terms, O otherwise.

 Aweight: based on the inverse document frequency idf; (asin the vector
model).
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Example

v" We shall consider only the case of uniform priors, weighted
conditionals, and binary posteriors.

v’ Example

o A total of 10 documents (n = 10).

« Atotal of 4terms(t=4): a, b, c, d.

» A gpecific document d; has these terms
P(a|d;) =0.6, P(b|d;) =0.8, P(c|d7) =0.4,
P(d|d;) =0.

A (Boolean) query g specifies theseterms: a, c.

* Theprior probability is P(d;) = 0.1.

e The posterior probabilities: 1010
P(q](1,0,1,0)) = 1 (the other 15 posteriors are 0).

» We can now calculate the ranking P(q, d;).
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Example (cont.)

v' Example (cont.)

The summation is over 16 possible term vectors, but the only vector with
anon-zero posterior probability is1,0,1,0.
The contribution of theterms. 0.6 - (1-0.8) - 0.4 - (1-0) =0.048.

o For desired terms (such as a and c), the stronger their weight in the
document, the higher the final ranking!

o For undesired terms (such as b and d), the stronger their weight in the
document, the lower the ranking!

Thefinal relevance (ranking) of d;toqis

o P(q, d7). =0.1-0.048 = 0.0048.
Assume now another document dgs with term weights exactly as given in
g:P(a|ds) =1,P(b|dg) =0, P(c|ds) =1, P(d|dg) =0.
Then the contribution of thetermsismaximal: 1-(1-0)-1 - (1-0) =1.
And thefinal ranking is

o P(g,dg=01-1=0.1.
The uniform prior 1/n may be ignored as it affects al rankings equally.
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Example (cont.)

v Until now we assumed queries are simple conjunctions of terms.
 Intheexample, q=(aA c).

v Assume now queries are digunctions of such conjuncts.
« Forexample,g=(aAcC)V (aADb).

v" The posterior probability P(q | ki, ..., ki) would be defined as
1 for any vector that corresponds to a conjunct, and O otherwise.
* Inthisexample, P(q|(1,0,1,0)) =1and P(q|(1,1,0,0)) =1
(the other 14 posteriors are 0).
* Thisresultsin two non-zero components:
o 06-(1-0.8)-04-(1-0)=0.048
o 06-0.8-(1-04) - (1-0)=0.288
* And the overall ranking of d;with respect to this new query:
o P(g,d7) =0.1-(0.048 + 0.288) = 0.0336
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