Chapter 8 (sections 8.1- 8.3)

Vectors

· Vectors are homogeneous collections with random access

· Store the same type/class of object, e.g., int, string, …

· The 1000th object in a vector can be accessed just as quickly as the 2nd object

· Vectors are a class-based version of arrays, which in C++ are more low-level and more prone to error than are Vectors

Vector basics

· We’re using the class tvector, need #include”tvector.h”

· Vectors are typed, when defined must specify the type being stored, vectors are indexable, get the 1st, 3rd, or 105th element
tvector<int> ivals(10); // store 10 ints

vals[0] = 3;

tvector<string> svals(20); // store 20 strings

svals[0] = “applesauce”;

Defining tvector objects

· Can specify # elements in a vector, optionally an initial value

 tvector<int> values(300); // 300 ints, values ??

 tvector<int> nums(200,0); // 200 ints, all zero

 tvector<double> d(10,3.14); // 10 doubles, all pi

 tvector<string> w(10,"foo");// 10 strings, "foo"

 tvector<string> words(10); // 10 words, all ""
 tvector<string> words; // 0 strings but useful as discussed below

Vectors as lists

· The “vector as counters” example constructs and initializes a vector with a specific number of elements

· When a vector is used as a list we’ll use a different method for adding elements to the vector so that the vector can “grow”

· The vector grows itself, we (as client programmers) don’t

Reading words into a vector

 tvector<string> words;

 string w;

 cout << "enter file name: ";
 string filename;

 cin >> filename;

 ifstream input(filename.c_str());

 while (input >> w)

 {

 words.push_back(w);

 }

 cout << "read " << words.size() << " words" << endl;

 cout << "last word read is "

 << words[words.size() - 1] << endl;
Using tvector::push_back

· The method push_back adds new objects to the “end” of a vector, creating new space when needed

· The vector must be defined initially without specifying a size

· Internally, the vector keeps track of its capacity, and when capacity is reached, the vector “grows”

· A vector grows by copying old list into a new list twice as big, then throwing out the old list

· The capacity of a vector doubles when it’s reached: 0, 2, 4, 8, 16, 32, …

Comparing size() and capacity()

· When a vector is defined with no initial capacity, and push_back is used to add elements, size() returns the number of elements actually in the vector

· This is the number of calls of push_back() if no elements are deleted

· If elements deleted using pop_back(), size updated too

· The capacity of vector is accessible using tvector::capacity(), clients don’t often need this value

· An initial capacity can be specified using reserve() if client programs know the vector will resize itself often

Using tvector::resize() and tvector::reserve()

· The argument in a call to tvector::resize() changes the capacity and size of the tvector

· The argument in a call to tvector::reserve() also changes the capacity of the tvector but does not change the size

Passing vectors as parameters

· Vectors can be passed as parameters to functions

· Pass by reference or const reference (if no changes made)

· Passing by value makes a copy, requires time and space

void Print(const tvector<string>& v)

// pre: v.size() == # elements in v

// post: elements of v printed to cout, one per line
· If tvector::size() is not used, functions often require an int parameter indicating # elements in vector

