Streams (section 6.3)

Streams for reading files

· We’ve seen the standard input stream cin, and the standard output streams cout (and cerr)

· Accessible from <iostream>, used for reading from the keyboard, writing to the screen

· Other streams let us read from files and write to files

· Syntax of reading is the same: a stream is a stream

· Syntax for writing is the same: a stream is a stream

· To use a file stream the stream must be opened

· Opening binds stream to a file, then I/O to/from is ok

· Should close file streams, but happens automatically

Input file stream: Note similarity to cin

Using cin:

string word;

int numWords = 0; // # words read so far

while (cin >> word) // read succeeded

{ numWords++;

}

cout << "number of words read = " << numWords << endl;

Using an input file stream:

ifstream input; // need <fstream> for this

string filename = PromptString("enter name of file: ");

input.open(filename.c_str());

while (input >> word) // read succeeded

{ numWords++;

}

cout << "number of words read = " << numWords << endl;

Find longest word in file (most letters)

· Idea for algorithm/program

· Read every word, remember the longest word read so far

· Each time a word is read, compare to longest-so-far, if longer then there’s a new longest-so-far

· What should longest-so-far be initialized to?

· Short word? Long word? First word?

· In general, when solving extreme-value problems like this use the first value as the initial value

Using classes to solve problems

· Find the word in a file that occurs most frequently

· What word occurs most often in Romeo and Juliet

· How do we solve this problem?

· Suppose a function exists with the header below:

int CountOccurrences(const string& filename,

 const string& s)

// post: return # occurrences of s in file w/filename
· How can this function be called to find the maximally occurring word in Romeo and Juliet?

· Read words, update counter?

· Potential problems?

Complete the code below

int CountOccurrences(const string& filename, const string& s)’

// post: return # occurrences of s in file w/filename

int main()

{

 string filename = PromptString("enter file: ");

 ifstream input(filename.c_str());

 string word;

 while (input >> word)

 {

int occs = CountOccurrences(filename, word);

 }

 cout << "maximally occurring word is " << maxWord << endl;

 cout << "which occurs " << max << " times" << endl;

}

Two problems

· Words appear as The and the, how can we count these as the same? Other issues?

· Useful utilities in “strutils.h”

· ToLower
return a lowercase version of a string

· ToUpper
return an uppercase version of a string

· StripPunc
remove leading/trailing punctuation

· tostring(int)
return “123” for 123, int-to-string conversion

· atoi(string)
return 123 for “123”, string-to-int conversion

· We count occurrences of “the” as many times as it occurs

· Lots of effort duplicated, avoid using the class StringSet

· A set doesn’t store duplicates, read file, store in set, then loop over the set counting occurrences

StringSet and WordIterator

· Both classes support access via iteration

· Iterating over a file using a WordIterator returns one word at-a-time from the file

· Iterating over a set using a StringSetIterator returns one word at-a-time from the set

· Iteration is a common pattern: A pattern is a solution to a problem in a context

· We’ll study more patterns later

· The pattern has a name, and it’s an idea embodied in code rather than the code itself

· We can write code without knowing what we’re iterating over if the supports generalization in some way

See setdemo.cpp

#include <iostream>

using namespace std;

#include "stringset.h"

int main()

{

 StringSet sset;

 sset.insert("watermelon"); sset.insert("apple");

 sset.insert("banana"); sset.insert("orange");

 sset.insert("banana"); sset.insert("cherry");

 sset.insert("guava"); sset.insert("banana");

 sset.insert("cherry");

 cout << "set size = " << sset.size() << endl;

 StringSetIterator it(sset);

 for(it.Init(); it.HasMore(); it.Next())

 { cout << it.Current() << endl;

 }

 return 0;

}

