CSCI 201: Classes, From Use to Implementation (Ch. 6.1)

Classes

· We’ve used several classes, a class is like a data type, like int, bool, or double

· You can declare objects whose data type is defined by a class

· You can manipulate these objects using the functions defined in the class, these functions are often called “methods”

· string (this is a standard class), need #include <string>

· Objects: "hello", "there are no frogs", …

· Methods: substr(…), length(…), find(…), <<

An example: Dice class

· To use the class Dice, need #include "dice.h"

· Objects: six-sided dice, 32-sided dice, one-sided dice

· Methods: Roll(), NumSides(), NumRolls()

A Dice object has state and behavior

· Each object has its own state, just like each int has its own value

· Number of times rolled, number of sides

· All objects in a class share method implementations, but access their own state

The header file dice.h

class Dice

{

 public:

 Dice(int sides); // constructor

 int Roll(); // return the random roll

 int NumSides() const; // how many sides

 int NumRolls() const; // # times this die rolled

 private:

 int myRollCount; // # times die rolled

 int mySides; // # sides on die

};

· Private data are called data members

· Sometimes called instance variables, each object has its own

· Public functions are called methods, member functions

· These functions are called by client programs
Using the Dice class

#include <iostream>

using namespace std;

#include “dice.h”

int main()

{

 Dice cube(6);

 Dice dodeca(12);

 cout << “cube rolled a “ << cube.Roll() << endl;

 for(int k=0; k < 6; k++)

 {

 cout << “dodeca just rolled a “ << dodeca.Roll() << endl;

 }

 cout << endl;

 cout << “cube rolled “ << cube.NumRolls() << “ times” << endl;

 cout << “dodeca rolled “ << dodeca.NumRolls() << “ times” << endl;

 return 0;

}

The header file is a class declaration, also called an interface---it is not an implementation

· Provides information to compiler and to programmers

· Compiler determines how big an object (e.g., Dice cube(6)) is in memory

· Compiler determines what methods/member functions can be called for a class/object

· Programmer reads header file (in theory) to determine what methods are available, how to use them

Information hiding and encapsulation, two key ideas in designing programs

· The header file provides compiler and programmer with how to use a class, but no information about how the class is implemented

· Important separation of concerns, use without complete understanding of implementation

· Implementation can change and client programs won’t (hopefully) need to be rewritten

Implementation, the .cpp file

· The implementation of foo.h is typically in foo.cpp, this is a convention, not a rule, but it’s well established (foo.cc used too)

· In the implementation file we see all member functions written, same idea as functions we’ve seen so far

· Each function has name, parameter list, and return type

· A member function’s name includes its class

· A constructor is a special member function for initializing an object, constructors have no return type

The implementation file dice.cpp

Dice::Dice(int sides)

// postcondition: all private fields initialized

{

 myRollCount = 0;

 mySides = sides;

}

int Dice::NumSides() const

// postcondition: return # of sides of die

{

 return mySides;

}

int Dice::NumSides() const

// postcondition: return # of sides of die

{

 return mySides;

}

int Dice::Roll()

// postcondition: number of rolls updated

// random 'die' roll returned

{

 RandGen gen; // random number generator (“randgen.h”)

 myRollCount= myRollCount + 1; // update # of rolls

 return gen.RandInt(1,mySides); // in range [1..mySides]

}

More on method implementation

· Each method can access private data members of an object, so same method implementation shared by different objects

· cube.NumSides() compared to dodeca.NumSides()

Understanding Class Implementations

· You do NOT need to understand implementations to write programs that use classes

· You need to understand interfaces, not implementations

· However, at some point you’ll write your own classes

· Data members are global or accessible to each class method

· Constructors should assign values to each data member

Methods can be broadly categorized as accessors or mutators

· Accessor methods return information about an object---they do not change the state of an object

· Dice::NumRolls() and Dice::NumSides()

· Mutator methods change the state of an object

· Dice::Roll(), since it changes an object’s myNumRolls

Class Implementation Guidelines

· All data should be private

· Make accessor functions const

· A const function doesn’t modify the state of an object

int Dice::NumSides() const

// postcondition: return # of sides of die

{

 return mySides;

}

Tips for Building Programs and Classes

· To develop a program, written with classes or not, start small

· Get a core working, and add to the core

· Keep the program working, easier to find errors when you’ve only a small amount of new functionality

· Grow a program incrementally rather than building a program all at once

· Make each function or class you write as single-purpose as possible

· Avoid functions that do more than one thing, such as reading numbers and calculating an average,

· Classes should embody one concept, not several. The behavior/methods should be closely related

