Class Design and Implementation (Chapter 7)

Designing and Using Classes

· Class implementation, summary of what we’ve seen

· Data is private and is accessible in each member function

· Each object has it’s own data, so that each of five Dice objects has its own mySides and myRollCount

· Member function implementations are in a .cpp file, interface is in a .h file

· Compiling and linking, interface and implementation

· Client programs #include a .h file, this is the interface

· Client programs link the implementation, which is a compiled version of the .cpp file (.o or .obj suffix), implementations are often combined in a library, e.g., libtapestry, and the library is linked

Implementing Classes

· Determining what classes are needed, and how they should be implemented is difficult; designing functions is difficult

· Experience is a good teacher, failure is a good teacher

Good design comes from experience, experience comes from bad design

· Design and implementation combine into a cyclical process: design, implement, re-visit design, implement, test, redesign, …

· Grow a working program, don’t do it all at the same time

· One design methodology says “look for nouns, those are classes”, and “look for verbs or scenarios, those are member functions”

· Not every noun is a class, not every verb is a method

The Dog class example

· To be worked in class

· Adding state

· Adding behavior

· Adding interaction with Cat class

The Cat class example

· To be worked in class

· Adding state

· Adding behavior

· Adding interaction with Cat class

Three phases of creating a program

· The preprocessor is a program that processes a file, processing all #include directives (and other preprocessor commands)

· Takes a file, and creates a translation unit

· Replaces #include “foo.h” with contents of file foo.h, and does this recursively, for all #includes that foo includes and so on 

· Produces input to the next phase of program creation

· The compiler has a translation unit as input and produces compiled object code as output

· The object code is platform/architecture specific, the source code is (in theory at least) the same on all platforms

· Some compilers require special treatment, not up to standard C++

From compiling to linking

· The compilation phase creates an object file, but libraries and other files still need to be linked to create an executable

· Header files like “dice.h” provide only the interface, enough for the compiler to know that a function call has the right parameters and is used correctly

· The implemention file, “dice.cpp”, must be compiled and included in the final executable, or the program won’t work (call a dice function, but no one is home?)

· Linking combines object files, some of which may be collected in a library of related files, to create an executable

· Link the standard library (iostream, for example)

· Link other libraries depending on program, graphics, tapestry, other application-specific libraries

Issues in creating a program

· Programming environments create optimized or debug code

· Use debug version to facilitate development

· If you need optimization, use it only after a program works

· Some errors are compilation errors, typically language syntax or failure to find a #include’d header file

· The preprocessor looks in standard places for header files, sometimes this list needs to be changed

· Other errors are linker errors, libraries or object files that are needed aren’t included

· Change programming environment parameters to find the libraries

