Arrays (Section 8.4)

· The fundamental concept of an array in C++ is that of a sequential collection of values, all of the same type, all accessed by the same variable name. Individual values in an array are individually accessed by using the array name and an index (a number) to specify which value is being accessed.

· For example, consider this declaration:

 int number;

· This declares one variable of type integer capable of holding a single whole number. A diagram showing this variable's memory allocation would look like this:

 memory address: 1001 1005

 +---------+

 | |

 +---------+

 number

· Compare this to the declaration of an array of integers:

 int list[5];

· In this case we have declared an array which is capable of holding 5 integers. The 5 integers are located in the array, next to each other in memory, and indexed (numbered) from the first element (element 0) through to the last element (element 4).

· A diagram representing this array in memory would be:

memory address:

 1001 1005 1009 1013 1017 1021

 +---------+---------+---------+---------+---------+

 | | | | | |

 +---------+---------+---------+---------+---------+

 LIST[0] LIST[1] LIST[2] LIST[3] LIST[4]

· In C++ (and C) all arrays are indexed from 0 to n-1 where n is the size of the array.

· Arrays can be of any type, for example:

 int list[67]; // an array of 67 integers indexed from 0 to 66

 char string[20]; // an array of 20 characters indexed from 0 to 19

 float price[30]; // an array of floating point numbers indexed

 // from 0 to 29

Array usage

· The elements in an array can be accessed and used by specifying the array name and, in square brackets, the index of the element you want to use. For example, to store 78.54 into the first element of the array price, we would write:

 price[0] = 78.54; // Note, first element is index 0

· To store 100.25 into element 5 of the array price, we would write:

 price[5] = 100.25; // Note, this is the 6th element

· To print the last element of the array price, we would write:

 cout << price[29];

· When this index notation is used to access elements of an array, the individual elements can be treated as individual variables. The following samples show some possibilities:

 float total = price[0] + price[1]; // add the first two values

 total += price[29]; // add the last value to the total

 price[15] *= 2; // double the price of the 16th value

 cout << price[6] - price[8]; // display the difference of two prices

Simple array processing.

· Because arrays hold more than one piece of data and the elements of an array are indexed, we can, and should, use loops to help process array data.

· In the following example, a while loop is used to allow a user to enter the 10 values which will be stored in an array, and another while loop to add these 10 values. Here is the first part of the program:

 // Simple array processing

 #include <iostream.h>

 void main(void)

 {

 int list[10]; // an array of 10 integers

 int i; // used as an array index

 i = 0; // always start at 0 for arrays

 while(i < 10) {

 cout << "Enter a whole number for element " << i << " ";

 cin >> list[i]; // Note 1

 i++;

 }

· At this stage in the program the user has entered all 10 values into the array. The line at Note 1 is worth emphasising; the statement
 cin >> list[i];

reads a whole number typed at the keyboard by the user and stores it into element i of the array. The variable i takes on new values as the loop executes. For example, when i has a value of 6, the value entered at the keyboard will be stored into element 6 of the array. The statment will execute once for each value of i from 0 to 9 - thus filling the array.

· Now the program continues...
 // summing the array

 i = 0; // reset the index to start of array

 int total = 0; // to hold the array sum

 while(i < 10) {

 total += list[i];

 i++;

 }

 cout << "The total of the values in the array is "

 << total << endl;

 }//end main

· In this part of the program the same while loop structure has been used to visit each element in the array and add its value into the total.
Array Initialization

· Arrays can be initialized when they are declared:
 int numbers[5]={1, 2, 3, 4, 5};

· When you only initialize a portion of the values in an array, the unspecified values are set equal to 0. For example, in the declaration below:
 int numbers[5]={1, 2, 3};

array positions numbers[3] and numbers[4] are set equal to zero.

· You can also use the initial values to specify the size of the array as shown below:
 int numbers[]={1, 2, 3, 4};

In this example, the array numbers will have 4 elements corresponding to the 4 initial values.

Arrays as parameters

· There are two restrictions to the way arrays can be used in functions:
1. A function return type can not be an array

2. An array parameter can only be a reference parameter

· Below is a program in which an array is passed to a function.
#include <iostream.h>
int whatIsThis(int [], int);

main()

{

 const int arraySize = 10;

 int a[arraySize] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 int result = whatIsThis(a, arraySize);

 cout << "Result is " <<result ><< endl;

 return 0;

}

int whatIsThis(int b[], int size)

{

 return b[size - 1];

}

Notice that following:

· The actual parameter is the name of the array
· The declaration of the formal parameter specifies the data type of the array, but not the size of the array
· A second parameter is used to specify the size of the array (the formal parameter size) so that the function has access to that information.
