
Intro to LabVIEW
(Materials developed by Christophe Salzmann at École
polytechnique fédérale de Lausanne EPFL)

4

LabVIEW ?

• LabVIEW is a graphical programming environment, it
is targeted mainly at measurements and control, but
not exclusively

• LabVIEW runs on wide range of hardware, from FPGA
to multi-core CPUs

• LabVIEW is programmed (mainly) in G a graphical
language

• LabVIEW is the acronym for:
Laboratory Virtual Instrumentation Engineering Workbench

7

Why use LabVIEW ?

You will be a lot more efficient!

9

LabVIEW large examples

• CERN LHC

• SALT telescope

• Honeywell
• LA remote lab
• First Robotics
…

10

Why LabVIEW ?

• LabVIEW has hundreds of built-in
functions (engineering + scientific)

• And a lot of additional libraries
LabVIEW Application Builder
LabVIEW Real-Time Module
LabVIEW FPGA Module
LabVIEW PDA Module
LabVIEW Touch Panel Module
NI Vision Development Module
NI SoftMotion Development Module for LabVIEW
Express VI Development Toolkit
LabVIEW VI Analyzer Toolkit
Report Generation Toolkit for Microsoft Office
Internet Toolkit
LabVIEW Real-Time Module
LabVIEW FPGA Module
LabVIEW Statechart Module
LabVIEW Microprocessor SDK
NI LabVIEW Embedded Module for ADI Blackfin Processors
LabVIEW DSP Module
LabVIEW Real-Time Execution Trace Toolkit
LabVIEW PID Control Toolkit
LabVIEW DSP Test Integration Toolkit for TI DSP

Digital Filter Design Toolkit
Advanced Signal Processing Toolkit
Math Interface Toolkit
Modulation Toolkit
Order Analysis in LabVIEW
NI Sound and Vibration Analysis Software
Spectral Measurements Toolkit
NI Vision Builder for Automated Inspection
NI Motion Assistant
Database Connectivity Toolkit
NI Modulation Toolkit
NI Requirements Gateway
LabVIEW Control Design and Simulation Module
LabVIEW Simulation Interface Toolkit
LabVIEW System Identification Toolkit
LabVIEW PID Control Toolkit
LabVIEW Datalogging and Supervisory Control Module
LabVIEW Statechart Module
Vision Development Module
NI SoftMotion Development Module for LabVIEW

12

LabVIEW history (short)

1986 - LabVIEW 1
..
2014 - LabVIEW 2014

Same concepts among versions, if you know LabVIEW 1 you
know LabVIEW X and vice-versa

13

LabVIEW

2 main concepts:

Virtual instrument

Data flow programming

14

Virtual instrument

• Mimic real-life instrument

Front panel - diagram - connector pane
15

Virtual instrument (VI)

Control Indicator

Front panel	

 Diagram	

C2F.vi	

LabVIEW is
programmed
by dropping
nodes and
linking them
with wires

Connection	

Pane	

16

C equivalent

float function C2F (float deg_cel)

 {
 return deg_cel * 1.8 + 32;

 }

17

Data flow programming

The flow of data controls the program
execution.

It's like small rivers coming together to
form bigger rivers, then split to form
other rivers.

The data that flows is like the water, or
the electricity in a circuit.

A node is executed only when all its
inputs are know.

Z = (a * b) + 3 * (c – d)

a b

3

c d

Z

* -

+
*

18

Data flow programming
The flow of data controls the program execution
Parts of the diagram may run in parallel

22

LabVIEW environment

• LabVIEW IDE provides all the needed tools
– GUI builder – front panel
– G code editor - diagram
– Debugger
– Project manager
– Wizards
– Code structure generator (state diagram, OOP)
– Compiler, cross-compiler
– Code analysis/metrics
– Code coverage
– Source versioning, diff tools
– etc.

 … and a lot of examples

23

GUI Builder - Front panel
Draw the GUI as one would with another drawing program

(illustrator, powerpoint, etc.)

Controls and indicators are accessible via the Controls palette
Use right click or drag&drop to place control/indicator

24

GUI builder - edit object

Right-click on the given part and select

the desired option Edit all properties at once via a dialog

26

G - editor

•  Drop nodes
•  Connect nodes with the wiring tool

compilation error

28

G editor - C equivalent

float function C2F (float deg_cel)

 {

 return deg_cel * 1.8 + 32;
 }

void function C2F (void)

 { float deg_cel, deg_far;

 deg_far = deg_cel * 1.8 + 32;
 }

void function C2F (void)
 {

 float deg_cel, deg_far;

 }

30

Name

Code

Params.

G data types

31

G data types

•  G is strongly typed
•  Colors and sizes define data types
•  the wiring tool inform about types &

unit

boolean;

fixed_pt;

ulong;

long;

double;

cdouble;

string;

path;

long[];

long[][];

long[][][];

struct{};

refnum;

waveforn;

variant;

object;

a
r
r
a
y
s

cluster

32

G data types

•  Automatic type conversion may occur, red dot
•  Type conversion can be explicit, follows IEEE 754
•  type conversion ≠ typecast

typecast
out=*(type*)∈

out = RoundtoInt (in);

double in;

out = *(int32*)∈

≠

automatic conversion
2.5 -> 2
3.5 -> 4

2.5 -> 1074003968

33

G data types - array

Array -> structure with all elements having the
same type

•  Arrays can be of any dimension (up to 64)
•  Arrays can be of any types
•  Array are dynamically allocated & expended
•  Width of ‘[]’ visually informs about dimension
•  Many array primitives exists, even more linear

algebra functions
•  Waveforms are specific 1D array type
•  Matrix (real or complex) are specific 2D array types

Bool[];

long[];

long[][];

long[][][];

float[][][][][]..

struct[];

Str[];

waveform;

matrix; array
indexes

array element

34

Array[0][0] = 1

G data types - cluster

Cluster-> structure with element of mixed types

•  Similar to de-multiplexer
•  Cluster size (# elements) is fixed
•  Cluster color indicates if its elements are of fixed

size (brown) or not (pink)
•  Cluster can be nested
•  Cluster element can be accessed by position or

name (recommended)

struct {

 double f;

 char[] s;

 bool b;

} c;

c.f = c.f + 0.5;

35

G data types – reference

Are like pointers/references in c++

•  Store a reference to LabVIEW data and objects
•  Green wire, cannot be “viewed”
•  Used for file, network, etc. access
•  Front panel and diagram elements can be referenced

FILE *f;

char[255] c;

f= fopen(”a”);

e= fread(f,c);

Path

reference

36

G data types - enumeration

Enumeration
•  set of names represented by an integer value enum {

 one,

 two,

 banana

}

where

 one is 0

 two is 1

 banana is 2

U16 = 1

37

G data types – object

As in Object Oriented Programming

•  Different implementations (NI, others)

class CRectangle {

 int x, y, e;

public:

void set_center

 (int,int,int);

void set_edge(int);

int area (void);

} rect;

rect.set_edge(2);

int a = rect.area();

CRect private data!

39

G-functions

40

•  Primitive functions have a yellow background
•  They cannot be edited
•  Hundreds of them grouped by data type in palettes
•  Many functions are polymorphic

G-functions

+

and

>=

r*e^(i*theta)

exp

enqueue

find in array

find str

millisecond

show dialog

read text file

parse string for float

41

•  Polymorphism: same code for different data types, functions supporting
more than one data types

int32, double, bool, 2D array, ..
•  Many primitives are polymorphic
•  LabVIEW may automatically convert data type (red dot)

G-polymorphism

Bout = B1 AND B2

Lout = L1 AND L2

 // bit by bit op.

Lout = RoundtoInt(F1)

AND L2

F

T
F

0

4

3

4

7

3.5

0100b

0011b

0100b

0111b

RoundtoInt(3.5) -> 4

44

•  Array polymorphism
•  operations are performed element by element, not vector/matrix

G-polymorphism

for (i=0;i<Size(A1);i++)

 Out1 = A1[i] + D;

n=min(size(A2),size(A3));

for (i=0;i<n;i++)

 Out2 = A2[i] + A3[i];

n=min(size(A2),size(A3));

for (i=0;i<n;i++)

 Out2 = A2[i] * A3[i];

Out4 = Dot(A4,A5);

A1[] = {1, 2, 3}
D = 2

A2[] = {1, 2, 3}
A3[] = {5, 6}

A4[] = {1, 2, 3}
A5[] = {4, 5, 6}

A4[] = {1, 2, 3}
A5[] = {4, 5, 6}

Out1[] = {3,4,5}

Out2[] = {6,8}

Out3[] = {4,10,18}

 Out4[] =32

≠

45

G - structures

46

G - structures

for (i=0;i<N;i++) {
}

i:=0;

do {
} while (cond; i++)

switch(cond) {
 case:
 break;
 default
}

Sequence1;

#ifdef cond
#endif

Formula node

Mathscript node

Event node

47

Execute its content a fixed number of time

•  goes from 0 to 9 (- 1)

Execution can be stopped (LV 8.6)

•  Stops if is true

Loops - for

for (i=0;i<N;i++)

 {

 …

 }

…

…

for (i=0;i<N;i++)

 {

 …

 if () break;

 }

48

Execute its content a fixed number of time

i goes from 0 to 9
last_i = 9

Loops - for

N=10;

for (i=0;i<N;i++)

 {

 i;

 }

last_i = i;

49

Shift registers

•  sets the value for iteration i
•  retrieves the value of the iteration i-1

•  out[] = {-1, 1, 2}

Loops - for

for(i=0;

 i<sizeof(in[]);

 i++)

 {

 if (i==0)

 out[i] = -1;

 else

 out[i] = in[i-1];

 }

52

Execute its content until a condition is reached

•  The while loop is executed 7 time
•  goes from 0 to 6

Loops - while

i = 0;

do {

 …

 }

 while(5 < i; i++);

…

…

53

Execute its content until a condition is reached

•  The while loop is executed 7 time
•  5 < i is true when i = 6
•  goes from 0 to 6

•  e=7
•  out[] = {1,2,3,4,5,6,7}

Loops - while

i = 0;

do {

 if (i==0)

 sr[i] = 0;

 else

 sr[i]=sr[i-1]+1;

 out[i]=sr[i];

 }

 while(5 < i; i++);

e = sr;

54

Wires are evaluated at the loop borders

•  “Stop1” is evaluated once, before entering the loop
•  “Stop2” is evaluated at each loop iteration

•  The loop will exit after one iteration is Stop1 is False
•  If Stop1 is True, the loop will exit when Stop2 is False

Loops - while

tmp = Stop1;

do {

 ...

 }

 while(tmp & Stop2);

55

•  If the condition is True
 pass the value connected to T

otherwise
 pass the F value

•  if x = 5 -> S = “x is 5”; S =“x different than 5” otherwise

Conditional - if

if (x==5)

 S = “x is 5”;

 else

 S = “x different

 than 5”;

57

•  Case structure is similar to switch statement
•  indicates that all cases are defined
•  indicates that if a case is not wired use the default value

•  S= “one” when x==1, and S=“default” for all other values of x
•  out = -1 or 0

Conditional - case

out = -1; //default val.

switch (x)

 case 1:

 S=“one”;

 break;

 case 0:

 default:

 S = “default”;

 out = -1;

58

•  Case type will adapt to the source format (typecast may occur)
•  Cases can contains range of values with “..” or separated with “,”
•  Specific code can be executed in given case
•  Case structures can be nested

•  when x is in [2,5,6,7,8,9,10]
S= “2,5,6,7,8,9,10”
out = x+1

Conditional - case

out = -1; //default val.

switch (x)

 ..<skipped>..

 case 2:

 case 5..10:

 S = “2,5,6,7,8, \

 9,10” ”;

 out = x+1;

 break

59

• Force LabVIEW to execute code in a given order
• Should be avoided
• Main use: measure execution time

• for the above case on a MacPro, d = 4 [ms]

Sequence

t1=millisec();

for (i=0;i<1000000;i++)

 sin(i)

t2=millisec();

d= t2 – t1;

60

My first VI

Once the VI’s functionality is defined

•  Design the GUI (controls & indicators)
•  Wire the program (diagram)
•  Test and Debug
•  Add the documentation to the VI
•  Define the interface (connector pane)
•  Draw the Icon

64

Specifications:
•  Compute the average of the 4 input values
•  If the result is less than 0 set it to 0

My first VI – average

av = (in1+in2+in3+in4);

if (av>0)

 result = av;

 else

 result = 0;

65

•  Test and debug

My first VI - debug

function Average_4Pos {

 av = (in1+in2+in3+in4);

 if (av>0)

 result = av;

 else

 result = 0;

 }

break point

probe

av>0 FALSE
Variables	

run
Highlight execution

66

•  fix and test again

My first VI - modify

function Average_4Pos {

 av = (in1+in2+in3+

 in4)/4;

 if (av>0)

 result = av;

 else

 result = 0;

 } ✔

67

•  Define the interface
•  Draw the icon

My first VI – As a function

double

function Average_4Pos(

 double in1,in2,in3,in4) {

 av = (in1+in2+in3+

 in4)/4;

 if (av>0)

 result = av;

 else

 result = 0;

 return result;

}

http://www.ni.com/devzone/idnet/library/guidelines_for_creating_icons.htm
68

•  Write the documentation
•  Will appear in the help window

My first VI - Documentation

/*

 This Vi computes the average of the 4

input values. If not connected the

input is considered set to '0'. If the

resulting average is less than 0, the

result is cohered to 0.

*/

double

function Average_4Pos(

 double in1,in2,in3,in4) {

 av = (in1+in2+in3+

 in4)/4;

 if (av>0)

 result = av;

 else

 result = 0;

 return result;

}

69

•  Create a new vi
•  drag and drop the Avrage_4Pos.vi from either the finder, the connector pane,

or the palette
•  create a control for the Stop button
•  Add a shift register, initialize it to 0
•  Connect the random number generator node

My first VI – Call it

void function CallAvr(void) {

 sr1=0;

 sr2=0;

 sr3=0;

 While (!Stop) {

 sr=rand();

 sr1=sr;

 sr2=sr1;

 sr3=sr2;

 Avrage_4Pos(sr,sr1,

 sr2,sr3);

 };

}

70

Tools bars - front panel
Execution

fonts align distribute resize order/group/lock

text

pos/size/select

operate scroll

color

Auto. tool

74

Tools bars - diagram
Execution

Highlight execution

retain wire values

debug
clean up diagram

SPACE

TAB next tool

operate <-> pos/size/select

Alt duplicate
drag

run

 E front panel <-> diagram

75

Recap: Virtual Instrument (VI)

Front Panel (UI)

Diagram (Program)

Connector Pane (Interface)

•  Data paces the program execution

•  Data flows from sources to sinks

•  Data flows in parallel

•  Wires are like variables' name

float function A_B(float A, float B)

 {

 return A*B;
 }

A VI is like a function with its parameters
defined in the connector pane

76

Recap

•  Virtual Instrument & data flow programming
–  Vi is made of a front panel, a diagram, a connector pane and some documentation
–  The execution of a node is only possible when all the needed data are ready

•  G is strongly typed, wire color indicate its type, wire
thickness indicates its dimension

•  All classical structures are available in G
•  In loops (For/While) wires are evaluated once at the loop

border
•  Shift registers hold their values until the VI is removed from

memory (= no reference to it, as in sub-vi)

77

Resources
• http://www.mech.uwa.edu.au/jpt/tutorial/index.html
• http://www.mines.edu/academic/courses/eng/EGGN383/ref/r29/
• http://www.eelab.usyd.edu.au/labview/main.html
• http://online.physics.uiuc.edu/courses/phys405/fall05/

P405_Labs/Lab4_LabVIEW_Primer/Lab4_LabVIEW_primer.pdf
• http://www.iit.edu/~labview/Dummies.html
• http://www.ee.upenn.edu/rca/software/labview.html
• http://egweb.mines.edu/eggn350/labview/
• http://oldwww.rasip.fer.hr/research/labview/gintro.html
• http://www.tufts.edu/as/tampl/program/workshops/

workshop2.html
• http://www-ee.eng.buffalo.edu/faculty/paololiu/edtech/roaldi/

tutorials/labview.htm
• http://c.webring.com/hub?ring=labview&id=97&prev5
• https://sine.ni.com/apps/we/nigb.main?code=GB_TUTLV

78

