

WebIOPi

Installation
Walk-through

Macros

Installation

● Install WebIOPi on your Raspberry Pi
– Download the tar archive file:

wget www.cs.unca.edu/~bruce/Fall14/WebIOPi-0.7.0.tar.gz

– Uncompress:

tar xvfz WebIOPi-0.7.0.tar.gz

– Change directory to new WebIO folder:

cd WebIOPi-0.7.0

– Run setup shell script:

 sudo ./setup.sh

https://code.google.com/p/webiopi/

Breadboard: ground and power

● Setup ground and power rails

Breadboard: Add components

WebIOPi

● Try it:
– On the Pi, start the web server:

sudo service webiopi start

– On the Pi, open the WebIOPi default page in Midori:

use the URL: localhost:8000

– Open the WebIOPi default page in Chrome on your PC:
● On your Pi, use the ifconfig command to determine your pi's IP

– For example, it might be: 192.168.0.146
● On you PC, open Chrome and open the URL: IP:8000

– For example the URL might be: 192.168.0.146:8000

What's happening

● All of the source code is installed on your Pi in the
WebIOPi-0.7.0 directory but it's easier to view on the
Source tab of the WebIOPi site

● WebIOPi is REST API containing many things: a
HTTP server (written in python), a library of javascript
library, python library...

● The default WebIOPi display is created using:
– the index.html file in the htdocs directory

– The GPIO configuration as defined by the files in the
python directory

● Both the GPIO configuration and the browser display
can be customized

https://code.google.com/p/webiopi/

A tour of WebIOPi: Example 1

● Start with the example scripts installed in your WebIOPi folder
– Change directory to WebIOIPi-0.7.0/examples/scripts/simple

– Notice the file index.html

● Edit the WebIOPi config file to reference this html files:

– sudo gedit (or nano) /etc/webiopi/config
– In the [HTTP] section, change doc-root to be:

doc-root=/home/pi/WebIOPi-0.7.0/examples/scripts/simple
● Stop the server:

sudo service webiopi stop
● Restart the server:

sudo service webiopi start
● Look at the default URL in the brower and open the index.html

file to understand what's happening

Recap on building a custom HTML
file

● Include the webiopi.js javascript library
● Include in-line javascript code that begins with an

anonymous Javascript function passed to the WebIOPi JS
library function webiopi().ready()

● The $(“id”) returns the DOM object of the element with that
id

● Create buttons using webiopi().createGPIOButton()
● Append buttons to html elements using the jQuery method

append()
● Include webiopi().refreshGPIO(true) to update the display
● WebIOPi has predefined CSS ids and classes

http://api.jquery.com/

Example 2
● Let's look at the blink example script in your WebIOPi folder

– Change directory to WebIOIPi-0.7.0/examples/scripts/blink

– Notice the script.py file but no index.html

● Edit the WebIOPi config file to reference this script file and remove the
reference to the previous custom index.html file:

– sudo gedit (or nano) /etc/webiopi/config
– In the [HTTP] section, comment out the doc-root assignment:

#doc-root=/home/pi/WebIOPi-0.7.0/examples/scripts/simple
– In the [SCRIPTS] section, change myscript to be:

myscript=/home/pi/WebIOPi-0.7.0/examples/scripts/blink/script.py
● Stop the server:

sudo service webiopi stop
● Restart the server:

sudo service webiopi start
● Look at the default URL in the brower and open the index.html file to

understand what's happening

Recap on make custom python
scripts

● import webiopi
● define GPIO = webiopi.GPIO
● Interface with server via setup(), loop() and destory()

functions
– setup() is run once on first load

– loop() is run repeatedly

– destroy() is run before server shutdown

● Can define other functions to be called within the three
above

Example 3: Macros
● Macros are used to define custom functionality in the WebIOPi API

– They are functions written in python that can be referenced in the html
document running in a browser---exchange information between server and
browser

● Edit /etc/webiopi/config file to load the contents of the
tutorials/2.macros directory

– In the [HTTP] section, make the doc-root assignment:

doc-root=/home/pi/WebIOPi-0.7.0/tutorials/2.macros
– In the [SCRIPTS] section, change myscript to be:

myscript=/home/pi/WebIOPi-0.7.0/tutorials/2.macros/script.p
● Stop the server:

sudo service webiopi stop
● Restart the server:

sudo service webiopi start
● Look at the default URL in the brower and open the index.html file to

understand what's happening

Example 4, more macros

● Edit /etc/webiopi/config file to load the contents of the
examples/scripts/macros directory

– In the [HTTP] section, make the doc-root assignment:

doc-root=/home/pi/WebIOPi-0.7.0/examples/scripts/macros
– In the [SCRIPTS] section, change myscript to be:

myscript=/home/pi/WebIOPi-
0.7.0/examples/scripts/macros/script.p

● Stop the server:

sudo service webiopi stop
● Restart the server:

sudo webiopi -d -c /etc/webiopi/config
● Look at the screen output

Recap on Macros

● Used to exchange information between server and
browser

● The WebIOPi JS library function webiopi().callMacro() is
useful for calling macros that return values
– The return values become the input to the referenced callback

function

● Functions assigned to variables are useful for
referencing callback functions

● Macros that return values are not useful unless used in
conjunction with a callback function

Resources

● WebIOPi main page
● WebIOPi source code
● WebIOPi forum
● jQuery API

https://code.google.com/p/webiopi/
https://code.google.com/p/webiopi/source/browse/#svn/trunk
https://groups.google.com/forum/#!forum/webiopi
http://api.jquery.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

