Serial Communication

Serial protocols
Arduino
Arduino with Raspberry Pi
What is Serial Communication?

Parallel

<table>
<thead>
<tr>
<th>OUT0</th>
<th>b0 → IN0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>b1 → IN1</td>
</tr>
<tr>
<td>OUT2</td>
<td>b2 → IN2</td>
</tr>
<tr>
<td>OUT3</td>
<td>b3 → IN3</td>
</tr>
<tr>
<td>OUT4</td>
<td>b4 → IN4</td>
</tr>
<tr>
<td>OUT5</td>
<td>b5 → IN5</td>
</tr>
<tr>
<td>OUT6</td>
<td>b6 → IN6</td>
</tr>
<tr>
<td>OUT7</td>
<td>b7 → IN7</td>
</tr>
<tr>
<td>CLlk</td>
<td></td>
</tr>
</tbody>
</table>

Serial

OUT → b0 → b1 → b2 → b3 → b4 → b5 → b6 → b7 → IN

Examples:
- Synchronous: I2C, SPI
- Asynchronous: Bluetooth, Xbee, USB, Ethernet

The rest of the story
Serial and the OSI model

- Older than the OSI model
- Supports PPP
- On-Line guide
Physical Serial Connection

Detail:

Connect ground to ground and RX to TX in both directions:
1. Connect FTDI yellow to Pi TX
2. Connect FTDI orange to Pi RX
3. Connect Gnd to Gnd via the power rail

The colored wire-must connect to pin 1 on the Pi
A Linux Serial Connection

- First, determine the name of the serial device that is connected to the Pi. It is probably something like `/dev/ttyUSBN`.
- Connect to it with the following command: `screen /dev/ttyUSBN 115200`
- Hit **Enter** a couple of times and hopefully the Pi will give you a login prompt.
- Use the two-character sequence Ctrl-A k to exit from `screen`.
Serial Port Programming using Python and pyserial

- Follow the steps provided, beginning at Step 2, in the elinux guide to serial port programming to write your first two programs using the serial port.
 - As mentioned in the above guide, be sure to disable the Linux default use of the serial port as described here.
- Show your work before moving on.
Serial Communication between the Arduino and the RPi

• A quick look at the Arduino Uno

• At least 3 options for serial communication between Uno and RPi:
 – Using PySerial
 • Example programs
 – Using Nanpy
 • Examples 1, 2, and 3
 – Using Webiopi ← today's effort
 • Also provides a web-based interface!
Using Webiopi for communication between Uno & RPi: Part 1

- Follow the setup description provided in the Webiopi serial tutorial with the following caveats/additions:
 - The Arduino IDE is installed on your desktop; no need to install it on your RPi
 - Move the USB cable connected to the Uno as necessary between the Pi and the desktop: connect to the desktop to program the Uno, connect to the Pi to communicate using WebIOPi
 - Use the Chrome browser on your desktop to interface with Webiopi; do not use Midori
 - No need to update Webiopi using SVN; the version we downloaded was created after the fix
 - Python serial still did not function properly when I tested it
 - The javascript implementation does work; we will use it
 - When running the code in the tutorial, adding the referenced hardware components to the breadboard is optional
Using Webiopi for communication between Uno & RPi: Part 2

• Try the following exercises provided in the Webiopi serial tutorial:
 – Serial Loopback trick with the Serial Monitor
 – Optional: Serial Loopback trick with REST mapping
 • Use this python script: wget http://www.cs.unca.edu/~bruce/Fall14/loopScript.py
 – Do not try Serial Loopback trick without REST mapping
 – Arduino Streaming Serial Monitor Test only
 • Do not try the python and javascript code (in the subdirectory: tutorials/4.serial-streaming)
 – Most important: try the Arduino Command Example
 • The code is in the subdirectory: tutorials/5.serial-command
In-Class Exercise

- Modify the code in WebIOPi-0.7.0/tutorials/5.serial-command to create a web interface that turns on and off 1 LED controlled by the Uno
 - You must use serial communication between the Pi and the Uno to accomplish this task
 - You will need to write an Uno program (modify the one provided in the directory 5.serial-command)
 - You will also need to write a javascript program in the index.html file for WebIOPi (again, modify the one provided in the directory 5.serial-command)
 - Hint: Look at the button functionalities in the macros example studied earlier this semester
- Wire an LED to the Uno's breadboard to test your code.
- Demonstrate your interface before leaving class