UNCA CSCI 255 Exam 1 Fall 2011

This is a closed book and closed notes exam. Laptops, cell phones, and any other electronic storage or communication devices may not be used during this exam.

Name: Key

If you want partial credit for imperfect answers, explain the reason for your answer!

Problem 1 (30 points) True/False Questions

- 1. True or False: The ASCII code is a mapping of characters to numbers.
- 2. True of False Floating point numbers are typically represented in one's complement.
- 3. True or False: 2^N is the largest unsigned binary number that can be represented in N bits.
- 4. True or False: Ohm's law describes the relationship between current flow through and voltage drop across a resistor.
- 5. True or False: The output of a sequential logic circuit is solely a function of its inputs.
- 6. True or False: DeMorgan's law states that A AND A is equivalent to A, where A is any Boolean expression.
- 7. True of False: A Karnaugh map is used to represent the states of a flip-flop.
- 8. True or False: An AND gate can be built with fewer transistors than a NAND gate.
- 9. True or False: A multiplexer (a.k.a. mux) is a combinational logic device used to select one of many inputs for output.
- 10 True or False: Any combinational logic circuit can be build solely with NOT, OR and AND gates.
- 11 True or False: Asynchronous events are those occurring independently of the system clock.
- 12 True or False: A right-shift register is a sequential logic device that could be used to implement division by 2.
- 13. True or False: An 8-bit register can be built with 4 flip-flops.
- 14 (True) or False: Combinational logic circuits do not require a clock trigger.
- 15. True or False: The clock rate of a system can be set without regard for the combinational logic circuits in the system.

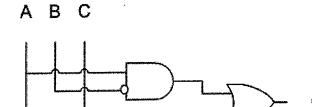
Problem 2 (8 points) Decimal conversion

Convert the following four signed decimal numbers into an eight-bit: (1) unsigned binary representation, followed by (2) two's complement representation.

31	-20
D 00011111	D 0001 0100
3 00011111	@ 1110 1100
	· .
80	-31
0000 1010 D	D 0001 1111
2 01010000	@ 1110 0001

Problem 3 (4 points) Two's complement to hex and decimal conversion Convert the following two eight-bit two's complement numbers into: (1) hex, and (2) signed decimal representation.

11111100	00000111
① ØXFC	0 ××07
@ 00000100+absolute	2 + 7 -> signed decimal
-4 -> signed	


Problem 4 (12 points) Adding

Add the following pairs of eight-bit two's complement numbers and indicate which additions result in an overflow.

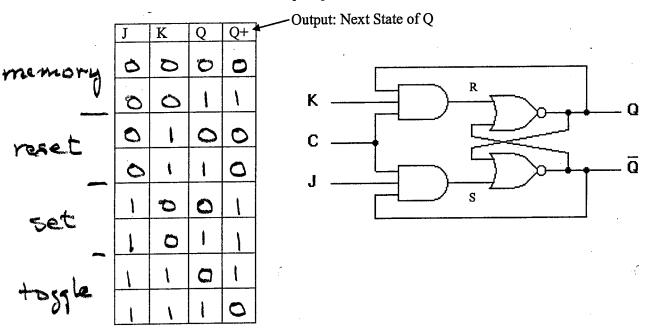
00110101	00100010
+ 10111010	+ 01101100
1110111	100011100 overflow
10001010	11101010
+ 10110110	+ 10101010
overflow -> 0 100000	10010100

Problem 5 (8 points) Gates to truth

Fill-in the truth table for the gate-level circuit shown below. The three inputs are on the left, the output is on the right.

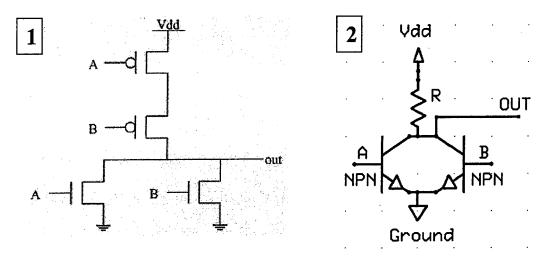
Α	В	С	OUT
0	0	0	1
0	0	1	0
0	1	0	(
0	1	1	0
1	0	0	
1	0	1	-
1	1	0	0
1	1	1	0

Problem 6 (6 points) Ranges


How many bits does it take to represent 50 items?

What is the greatest number that be represented in 9-bit unsigned notation?

What is the greatest number that can be represented in 9-bit two's complement notation?

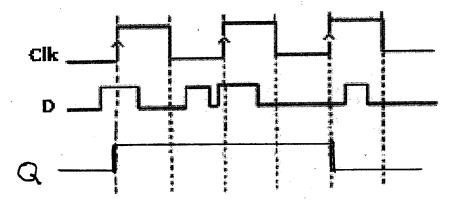

Problem 7 (8 points) JK Flip-Flop

Fill-in the truth table for a JK flip-flop.

Problem 8 (12 points) Transistors and Circuits

The two circuits below are alternative transistor implementations of the same logic gate. In the table below, for each combination of the input values A and B, state the output value and explain how circuit #2 works to produce that output.

A	В	OUT	Explanation	
0	0	1	with the base of both transistors low, there is no connection to fround so out = Vdd, i.e. out is high	
0	1	0	with B high there is a connection to ground so all voltage is dropped across the resistor & out is low	
1	0	0	ground through that than sister & all wiltage draps across the resister so OUT= 4	'au
1	1	0	same as above except both transistor allow current flow	
Na	Name of logic gate: NOR (a.k.a. NOT OR)			


Problem 9 (7 points) Truth to Boolean Expression

Write the Boolean expression that is equivalent to the following truth table, where A, B, and C are inputs and where Z is the single output. You do not need to simplify the expression.

A	В	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Problem 10 (5 points) Clocking

For the input and clock signals shown below, provide a timing diagram for the output, Q, of a D flip-flop assuming that the flip-flop is positive edge-triggered.

