
Sound Part 2: Exploring Programming

Can you really learn to program by investigation? If you are given lots of examples and
good references, the answer is a qualified “yes.” Computer Science is a lab science, and
the good news is that you don’t have to kill your object of study---experiments with
micro-processors are non-violent.

Blink (again)
Think about the program Blink from our last exercise. Did it ever stop running? If you
are new to programming, you may not find this curious, but a computer (or micro-
processor) typically executes each command that you give it, in the order that you give
them, and then waits until you give it more commands. Why did the LED continue to
blink indefinitely? If we don’t worry about the implementational details, the reason is
simple: Commands inside the procedure setup() run once at the start of the program.
After setup() has completed, the commands inside the procedure loop() run repeatedly.

There are a few other concepts that we need before we can play a song on our micro-
processor: variables, procedures, loops, if statements, and arrays. If you are already
familiar with these concepts, you will be able to proceed quickly through the sections that
follow until you get to Making Music. Be sure to work each section and answer the
associated questions.

Variables and Procedures

Variables
Remember the first statement in Blink: int ledPin = 13;? In that statement, ledPin is
declared as a variable. Variables store things like numbers, or letters, and variables have
names like ledPin. The statement int ledPin = 13; means that the variable named
ledPin can store integers (i.e., int) and it now stores the number 13.

Statements between
these 2 brackets belong
to setup()

Statements between
these 2 brackets belong
to loop()

int <name> = value;

Later on, when we write: pinMode(ledPin, OUTPUT); we think of ledPin as having the
value that we assigned earlier, 13. So that pinMode(ledPin, OUTPUT); means exactly
the same as pinMode(13, OUTPUT);. For more information on variables, checkout this
link.

Procedures
Actually, you have already used and discussed procedures; both setup() and loop() are
procedures. And, fortunately for us, there is an excellent tutorial on procedures and
variables provided by Limor Fried and from http://www.ladyada.net/learn/arduino.
Thanks! Read and work Lesson 2 from Ladyada to learn about both of these
programming constructs. The tutorial covers a few concepts that we have already
discussed, but a little repetition never hurts, hurts, hurts… Be sure to read the entire
lesson, but you do not need to work the exercises at the end of the lesson.

Loops
Remember that the statements (i.e., commands) in loop() run repeatedly---you saw that
again in the section above. The name loop is indicative of its behavior. You can create
loops in your program whenever you need them. We will learn to do this using a for
loop.

A for statement (i.e., for loop) repeats the statements enclosed in curly braces following
the header of the loop; it looks like this:

for (initialization; condition; increment)
{
//statement(s) to be repeated;
}

As indicated above, there are three parts to the for loop header. Here’s how it works:
1. The initialization is executed once at the start of the loop.
2. The condition is tested. If it's true, the statements enclosed in {}s are executed.
3. The increment is executed and step 2 above is repeated.
4. When the condition becomes false, the loop ends.

Typically for loops are used to repeat commands a specific number of times, and the
initialization, condition, and increment are used to count the number of times
that the commands repeat.

kind of thing
stored

name value currently
stored

http://www.arduino.cc/en/Tutorial/Variables
http://www.arduino.cc/en/Reference/For
http://www.arduino.cc/en/Reference/For
http://www.ladyada.net/learn/arduino/lesson2.html
http://www.ladyada.net/learn/arduino

To gain a more complete understanding of the for loop, try working some examples. The
examples below make use of the Serial.print() and Serial.println() commands (actually
procedure calls) to print data to the serial port. Let's take a brief digression to learn about
serial communication before working these examples.

Work the first half of Lesson 4 in the Ladyada tutorials provided by Limor Fried. You
may stop when you reach the section entitled, “Math is hard, let's try programming!”
(Of course, you can also work the remainder of the lesson, if you desire.)

When you have completed the first half of the lesson referenced above, try the for loop
examples below. Remember to select (i.e., open) the Serial Monitor on the Arduino IDE
tool bar to see what’s printed to the serial port.

Example 1
// Prints numbers to the serial port
void setup()
{
 Serial.begin(9600); // open serial port at 9600 bps:
}

void loop()
{
 for (int count = 1; count < 10; count++)
 {
 Serial.println(count, DEC); // print number to the serial port
 }
}
What does the statement count++ do? Modify the program above to print the numbers 0
through 10---what did you change?

Example 2
// Prints numbers in reverse order to the serial port
void setup()
{
 Serial.begin(9600); // open serial port at 9600 bps:
}

void loop()
{
 for (int count = 20; count > 0; count--)
 {
 Serial.println(count, DEC); // print number to the serial port
 }
}
Modify the program above to print the numbers 30 through 0---what did you change?

Example 3
// Prints even numbers to the serial port
void setup()

http://www.ladyada.net/learn/arduino/lesson4.html

{
 Serial.begin(9600); // open serial port at 9600 bps:
}

void loop()
{
 for (int count = 0; count < 21; count=count+2)
 {
 Serial.println(count, DEC); // print number to the serial port
 }
}
Modify the program above to print the odd numbers between 0 and 20---what did you
change?

If Statements

The if statement allows you to make choices while the program is running. You can
make something happen or not depending on whether a given condition is true at the
moment the program is executing. It looks like this:

if (someCondition) {
 // do stuff if the condition is true
}

There is a common variation called if-else that looks like this:

if (someCondition) {
 // do stuff if the condition is true
} else {
 // do stuff if the condition is false
}

There's also the else-if, where you can check a second condition if the first is false:

if (someCondition) {
 // do stuff if the condition is true
} else if (anotherCondition) {
 // do stuff only if the first condition is false
 // and the second condition is true
}

To see the if statement in action, we can use another Ladyada tutorial. Please
work lesson 5 of the Ladyada tutorials provided by Limor Fried. Work the tutorial until
you get to the section entitled, “Design challenge, part 1.” (Of course, you can also
work the remainder of the lesson, if you desire.) Be prepared to discuss your
countdown device program in a class discussion.

http://www.ladyada.net/learn/arduino/lesson5.html
http://arduino.cc/en/Reference/Else

Arrays
There is just one more programming concept that you need before Making Music, and
it's relativly easy. Arrays are just groups of variables. Grouping variables together
makes them easier to declare. For example, we could declare 6 variables to store
numbers without using arrays as follows:

int number1;
int number2;
int number3;
int number4;
int number5;
int number6;

Or we could declare them as an array with one statement as follows:

int numbers[6];

The entire collection, i.e., the array, is called numbers and its size is 6 (the number in
square brackets following the name).

To store the number 10 in the first variable, without arrays, I would write:

number1 = 10;

With arrays, I would write:

numbers[0] = 10;

The name of each variable in an array is the array name followed by its index position in
square brackets; we count index positions starting from 0. What would be the name of
the 2nd variable in the array?

While it is possible to assign a value to an individual variable (and change that value at
any time), it can be convenient to assign values to all variables in the array at the time the
array is declared. This can only be done when the array is declared, and the statement
looks something like this:

int numbers[] = {1, 2, 3, 4, 5, 6};

The values enclosed in {}s are assigned to the variables in the array sequentially from left
to right, such that numbers[0]=1, numbers[1]=2, and so on. The number of values
specified determines the number of variables in the array.

For more information on arrays, follow this link.

http://www.arduino.cc/en/Reference/Array

As a test of your knowledge, answer the following question; ask your instructor if you
need help. How would you declare an array of 10 variables that can store real numbers
(data type “double”) and assign the value 1.1 to each variable in the array?

Making Music
Ok, let’s make some music using our Arduino. We will again use an example program
from the Arduino IDE. Begin by attaching a piezo speaker to the Arduino per the
schematic below. You will probably have to use your breadboard to make the
connection to the speaker because most of our piezo speakers are configured differently
than the one pictured below.

Once you have connected your speaker, select File > Examples > Digital > Melody to
load the program. Run the program and then study it. Try to understand how it works
through analysis and experimentation. As part of your experimentation and to verify
your understanding of the program, modify Melody to play a new song.

We will end this exercise with a demonstration of your new song and a discussion of the
Melody program.

	Sound Part 2: Exploring Programming
	Blink (again)
	Variables and Procedures
	Procedures
	Loops
	Example 1
	Example 2
	Example 3
	If Statements
	Arrays
	Making Music

