CSCI 431 Final Exam

Name_______________________________

Short Answer Questions (5 points each):

1. For each of the languages below provide the following information:

· what paradigm does the language most closely fit

· is the language compiled, interpreted or hybrid

Lisp, Prolog, Ada, Algol (the first version), Smalltalk

2. The following is a (partial) functional breakdown of a compiler. Give a brief description of each functional component.

lexical analyzer (syntactic analyzer (semantic analyzer

3. Draw a Finite State Automata (FSA), state the equivalent regular grammar and the regular expression for the following language:

All binary numbers that contain the sequence "111" somewhere in the number

FSA:

Equivalent regular grammar:

Equivalent regular expression:

4. Given the declarations below, state which variables are type equivalent in a type system based on loose name equivalence and which are type equivalent in a type system based on structural equivalence.

 type Aarray = ARRAY[1..10] OF INTEGER;

 type Barray = Aarray;

 p, q : ARRAY[1..10] OF INTEGER;

 r : Aarray;

 s : Barray;

 t : ARRAY[1..10] OF INTEGER;

 u : Aarray;

5. For the program below, show the value printed for each of the four parameter passing techniques listed after the program.

 Program

 begin

 int X,Y,Result;

 procedure MakeWork(a,b,c,d,e);

 c = c-a;

 b = d+e;

 end;

 X = 3;

 Y = 12;

 Result = 10;

 MakeWork(2, Result, Y,Y,X+Y);

 print(Result);

 end

pass by value:

pass by reference:

pass by name:

pass by value-result:

6. For each of the following binding times for programming language components, give an example of a property in C that has the binding time.

 Language definition

 Language implementation

 Translation

 Link edit

 Execution

Questions 7 through 9 refer to the grammar below:

 1. < pgm > (< statement list > $$$

 2. < stmt list > (< stmt list > < stmt > | epsilon

 3. < stmt > (id := < expr > | read < id > | write < expr >

 4. < expr > (< term > | < expr > < add op > < term >

 5. < term > (< factor | < term > < mult op > < factor >

 6. < factor > ((< expr >) | id | literal

 7. < add op > (+ | -

 8. < mult op > (* | /

7. Draw the parse tree for 3 + 4 * 5

8. Is the grammar for expressions (i.e., <expr>) left associative?

9. Would the grammar be unambiguous if rules 4 and 5 were replaced with the following rules:

< expr > (< factor > | < expr > < op > < expr >

 < op > (< add op > | < mult op >

10. Define any 3 of the following terms:

 static type checking

 dynamic binding

encapsulation

abstract data type

polymorphism

1)

2)

3)

11. The first stage of a mark/sweep garbage collection algorithm is the identification of reachable objects. Discuss the possible implementation of this stage of mark/sweep in LISP.

12. Name three approaches to implementing mutual exclusion.

13. What is printed by the following C program assuming write simply writes out the values:

main()

{

 union{ union {int A; real B} C; int D} E[4];

 E[1].C.A = 2;

 E[1].C.B = 3;

 E[1].D = 4;

 write(E[1].C.A , E[1].D);

}

Program Language Specific Questions (5 points each):

 1. Identify the messages and objects in the following segment of Smalltalk code:

(times > 100)

 ifTrue: [Transcript show: 'You will get bored!'. Transcript cr]

 ifFalse: [1 to: times do: [:i | (Transcript show: text) cr]]

2. Consider the following Prolog database.

fun(X) :- red(X), car(X).

fun(X) :- blue(X), bike(X).

red(apple_1).

red(car_27).

bike(my_bike).

bike(honda_81).

car(desoto_48).

car(edsel_57).

blue(flower_3).

blue(honda_81).

Suppose the following query is made:
fun(What).

Describes the steps made by the Prolog system in answering the query. Be specific. Be sure to mention specific instances of unification and backtracking.

3. Draw the box-and-point structure (the CONS cells and pointers) for the following expressions:

 (((a (b)) c) d)

4. Given the function definition below what will be output by the call:

(mystery ‘ (1 2 3))

(define (mystery ls)

(cond ((null? ls) ())

 ((not (list? ls)) (+ 1 ls))

 (#t (cons (mystery (car ls)) (mystery (cdr ls))))))

5. Identify (circle) the critical region(s) in the Ada package body below:

-- Simulation of Parallel Processing

-- file: buftask.adb

-- This is the body of an Ada package which uses

-- tasks to implement a ten character buffer. Tasks are provided

-- to write to and read from the buffer. The buffer is implemented

-- as a queue using a circular array. The buffer is a resource

-- shared by the task which writes to the buffer and the task which

-- reads from the buffer.

package body BufTask is

 -- array type for the buffer.

 type ListType is array(0..9) of character;

 -- The buffer is implemented as a record containing the

 -- array to store the characters, indices of the front and

 -- rear of the buffer, the count of the number of

 -- characters currently in the buffer, and boolean flags

 -- to signal when the buffer is empty or full.

 type BufferType is record

 List : ListType;

 front : integer := 0;

 rear : integer := 9;

 count : integer := 0;

 empty : boolean := true;

 full : boolean := false;

 end record;

 Buffer : BufferType; -- The variable which is the character buffer.

 -- The task which writes a character to the buffer.

 task body WriteChar is

 c : character; -- Stores the character to place in the buffer.

 i : integer;

 begin

 loop

 select

 when not Buffer.full =>

 accept Write(ch : in character) do

 c := ch; -- Get char to put

 end Write; -- in buffer.

 i := (Buffer.rear + 1) mod 10; -- Now place the

 delay 0.01; -- character at the

 Buffer.rear := i; -- rear of the buffer.

 Buffer.empty := false;

 Buffer.List(Buffer.rear) := c;

 i := Buffer.count + 1; -- The delays are here

 delay 0.1; -- to force the interweaving

 Buffer.count := i; -- of the tasks.

 if (Buffer.count = 10) then -- Check if the buffer

 Buffer.full := true; -- is full.

 end if;

 or

 delay 0.1; -- If the buffer is full, wait a moment

 end select; -- and then loop around and check it again.

 end loop;

 end WriteChar;

 -- The task which reads a character from the buffer.

 task body ReadChar is

 begin

 loop

 select

 when not Buffer.empty =>

 accept Read(ch : out character) do -- Read the char

 ch := Buffer.List(Buffer.front); -- at the front

 end Read; -- of the buffer.

 Buffer.full := false;

 Buffer.front := (Buffer.front + 1) mod 10;

 Buffer.count := Buffer.count - 1;

 if (Buffer.count = 0) then

 Buffer.empty := true;

 end if;

 or

 delay 0.1; -- If the buffer was empty, wait a moment

 end select; -- and then loop around and try again.

 end loop;

 end ReadChar;

begin

null;

end BufTask;

6. Given the function definition below, what is output by the call:

mystery [1,2,3,4,5];

- fun mystery [] = []

= | mystery (h::t) = mystery(t)@[h];

7. What would be displayed in your browser if you accessed a file containing the following PHP code:

<HTML>

<BODY>

 This is a php example

 <?php

 //Support C++ sytle comments

 echo "Hello World
";

 echo "How are you?
"

 ?>

 <? /*A short version of the tag

 which is not always enabled */

 $a = 1;

 $b = 2;

 echo "$a plus $b is $a + $b
";

 echo '$a plus $b is $a + $b
';

 ?>

 <script language="php">

 echo "Some html editors do not like <?php tags"

 </script>

</BODY>

</HTML>

