Csci 201 Fall’01: Review for Final

Notes: All exams are open book.

 You should also study the material on previous class exams.

Problem 1

Answer the following questions concerning the code segment below:

 …

 1. StringTokenizer tokenizer;

 2. String line, name, file="inventory.dat";

 …

3. try {

 4. FileReader fr = new FileReader(file);

 5. BufferedReader inFile = new BufferedReader(fr);

 6. line = inFile.readLine();

 7. while (line != null) {

 8. tokenizer = new StringTokenizer(line);

 9. name = tokenizer.nextToken();

10.
 try {

 11.

units = Integer.parseInt(tokenizer.nextToken());

…

12.
 }

13.
 catch (NumberFormatException exception) {

14.

 System.out.println ("Error in input. Line ignored:");

15.
 }

 16. line = inFile.readLine();

 17. }

 …

1. What is the purpose of the catch/try blocks that begin on line 10 and end on line 15?

ANS: To catch the NumberFormatException exception that may be thrown by a statement in the try block. When that exception is caught, the message "Error in input. Line ignored:" is printed to the monitor.

2. Explain lines 4 and 5.

ANS: Create an input stream object that is tied to the file named inventory.dat. The final input stream object will be of type BufferedReader, and will have a method readLine() that returns a complete line of text.

3. Explain line 6.

ANS: The inFile object’s readLine() method is called to return a line of text which is then stored in the String variable named line.

4. Explain line 8.

ANS: A new StringTokenizer object is being created and its address is stored in the reference variable named tokenizer. The StringTokenizer constructor is passed the string stored in the variable named line.

5. Explain line 9.

ANS: The nextToken() method of the object named tokenizer is called and its return value is stored in a variable named name. The nextToken() method returns the next substring of contiguous characters from the string line.

6. When will the while loop that begins on line 7 terminate?

ANS: When the end of file is reached.

Problem 2

What will be output by the program below?

import MyException;

public class Exception2

{
public static void main(String [] args) throws MyException

{
int x = 1, y = 0;

System.out.println("Starting the calculations");

int ans = calculations(x,y);

System.out.println("The answer is: " + ans);

}

public static int calculations(int x, int y) throws MyException

{
int ans = division(x,y);

return ans;

}

public static int division(int x, int y) throws MyException

{
int z = 0;

if(y==0) {

 MyException exceptionObj = new MyException("Division would be undefined");

 throw exceptionObj;

} else

 z = x/y;

return z;

}

}

ANS:

Starting the calculations

Exception in thread "main" MyException: Division would be undefined

a stack trace

Problem 3

What will be output by the program below?

public class Exception2

{
public static void main(String [] args)

{
int x = 1, y = 0;

System.out.println("Starting the calculations");

int ans = calculations(x,y);

System.out.println("The answer is: " + ans);

}

public static int calculations(int x, int y)

{
int ans = division(x,y);

return ans;

}

public static int division(int x, int y)

{
int z = 0;

try {

 if(y==0) {

 MyException eObj = new MyException("Division would be undefined");

 throw eObj;

 } else

 z = x/y;

}

catch(MyException e)

{ System.out.println("The exception message is: " + e.getMessage());

}

return z;

}

}

ANS:

Starting the calculations

The exception message is: Division would be undefined

The answer is: 0

Problem 4

What will be output by the program below?

public class Bird

{
protected String name, size, colors;

public Bird(String n, String s, String myColors)

{
name = n;

size = s;

colors = myColors;

}

public String song()

{
String mySong = ("tweet, tweet, tweet");

return mySong;

}

public String eats()

{
String food = "worms and seeds";

return food;

}

public String nameAndColors()

{
String features=("a " + name + "'s color is " + colors);

return features;

}

public String nameAndSize()

{
String features=("a " + name + "'s overall size is " + size);

return features;

}

}

public class BlueBird extends Bird

{
public BlueBird()

{
super ("Bluebird", "small", "blue");

}

public String toString()

{
String myMessage = super.nameAndSize() + "\n";

myMessage = myMessage + super.nameAndColors() + "\n";

myMessage = myMessage + "a " + super.name + " song is " + super.song() + "\n";

myMessage = myMessage + "a " + super.name + " eats " + super.eats() + "\n";

return myMessage;

}

}

public class BirdTalk

{
public static void main(String [] args)

{
BlueBird happy = new BlueBird();

System.out.print(happy);

}

}

ANS:

a Bluebird's overall size is small

a Bluebird's color is blue

a Bluebird song is tweet, tweet, tweet

a Bluebird eats worms and seeds

Problem 5

Write a class called Peguin that is derived from the Bird class given in the problem above. The Penguin class must contain the methods described below. (It may include other methods as well.)

1. A constructor. The constructor must create a Penguin object with the following attributes:

name = “Penguin”, size = “large”, colors = “black and white”

2. A song() method that has no parameters and returns the string: "bark, bark, bark"

3. An eats() method that has no parameters and returns the string “fish”

4. A nameAndColors() method that returns a string giving the name of the bird (i.e., Penguin) and its colors (i.e., black and white).

ANS:

import Bird;

public class Penguin extends Bird

{
public Penguin()

{
super ("Penguin", "large", "black and white");

}

public String song()

{
String mySong = ("bark, bark, bark");

return mySong;

}

public String eats()

{
String food = "fish";

return food;

}

}

Problem 6

Write a class to test the Penguin class that you developed in the problem above. This class should contain the method main(). It should create a Penguin object and call each method available in that object with the exception of those methods inherited from the Object class.

ANS:

import Penguin;

public class BirdTalk

{

public static void main(String [] args)

{
Bird slippy = new Penguin();

System.out.println("a Penguin's song is " + slippy.song());

System.out.println("a Penguin eats " + slippy.eats());

System.out.println(slippy.nameAndColors());

System.out.println(slippy.nameAndSize());

}

}

