CSCI 431 Fall 2000: EXAM 2
Name: _____________________________

Multiple Choice Questions (3 points each):

1. Your boss asks you to learn a new language. You discover that in this new language local variables of a procedure are history sensitive. This probably implies
1. it is politically correct

2. the procedure has side effects

3. multiple activations records can exist simultaneously for the same procedure

4. (2) and (3)

5. none of the above (Correct

2. Your boss asks you to learn a new language. You discover that in this new language, scoping is dynamic. You would also expect to find

1. multiple inheritance

2. run time descriptors

3. no static pointers in the activation record

4. static typing

5. (2) and (3) (Correct
3. A display vector contains

1. symbol table type information for each variable in the current scope.

2. symbol table type information for each distinct variable in the entire program.

3. one entry for each variable (can be duplicates if there are duplicate variables)

4. pointers to activation records accessible in this scope. (Correct
4. The difficulties of dynamic scoping include all of the following, except
1. static type checking is not possible

2. run time descriptors are required

3. dynamic allocation is cumbersome (Correct
4. readability is lessened

5. In terms of results, what is the difference between call by name and call by reference parameter passing?
1. Results may differ if a global variable is used which was also a parameter.

2. Differences could exist in a call such as doit(i,A[i]). (Correct
3. Differences could exist in a call such as doit(a,b).

4. Differences could exist if a local variable has the same name as exists in a passed expression.

5. There is no difference in final results when a parameter is passed by name or by reference.

6. In a C-like language in which parameters are only transmitted by value, what is true the following swap routine
 swap(a,b)

 { temp = a; a = b; b = temp; }

1. you cannot swap(i,D[i])

2. you cannot swap(D[j],D[i])

3. the routine does not work correctly for any arguments (Correct
4. the routine works correctly

7. A template function is a function in which

1. the type of key parameters and local variables is known at compile time. (Correct
2. the type of key parameters and local variables changes dynamically.

3. the type of key parameters and local variables is not known until run time

4. (2) and (3) above

5. None of the above
True/False Questions (2 pts each):

1. Function overloading can be resolved at compile time in C++. TRUE

2. Virtual functions can be resolved at compile time in C++. FALSE

3. The following function is legal in ML. FALSE

Fun add(x,y) = x+y

4. Pascal, C++, and Ada support encapsulation. FALSE

5. In ML, Tuples and Records are basically the same data structures. TRUE
Fill in the blank (2 pts each):

1. A situation that makes it impossible for a program to proceed with normal processing is termed an. ________________________ EXCEPTION
2. is a system created function used to return the proper evaluation of a parameter in call by name. ________________________ THUNK
3. is data implementation together with the set of operations that manipulate it.

 ________________________ ADT
4. contains the return address, local variables, parameters, dynamic chain pointer, and static chain pointer. ________________________ ACTIVATION RECORD
5. creates a data object having multiple names. ________________________ ALIASING
Short Answer (8 pts each):

1. Recall, a Pascal (or Ada) for-loop looks something like for i = A to B do stmt (or Ada: for i in 1..10 loop stmt). These loops are superficially similar to the for loop in C. List three ways in which the Pascal (or Ada) loop is restricted when compared to the C loop.

ANS: Compaison of Ada and C:

In Ada:

Type of the loop var is that of the discrete range; its scope is the loop body (it is implicitly declared)

 The loop var does not exist outside the loop

The loop var cannot be changed in the loop, but the discrete range (i.e., 1..10 in the example above) can be changed (although the change does not affect loop control)

 The discrete range is evaluated just once

In C:

The loop does not require an explicit loop variable. The form of the for loop is:

For (<init exp>; <test exp>; <end exp>)

and there are no restrictions on the expressions used.

If <int exp> is a variable declaration (such as a loop counter), then the variable continues to exist after the loop exists.

Both <test exp> and <end exp> are evaluated after each pass through the loop body.

The values of any variable (within scope) can be changed in the body of the loop including a variable used as a loop counter. Changes to the loop counter do affect loop control.

2. What is one reason for why many early languages did not support recursion?

ANS: Early languages (prior to Algol) did not include a run-time stack and therefore could not support multiple instances of sub-program variables, as required for recursion.
3. Consider the procedure BIGSUB in Algol-60 syntax below. For each of the following parameter-passing methods, state the values in the array LIST in BIGSUB after the return from SUB:

a. parameters passed by value

b. parameters passed by reference

c. parameters passed by name

d. parameters passed by value-result

procedure BIGSUB;

 integer GLOBAL;

 integer array LIST[1..2];

 procedure SUB (PARAM);

 integer PARAM;

 begin

 PARAM := 3;

 GLOBAL := GLOBAL +1;

 PARAM := 5;

 end;

 begin

 LIST[1] := 2;

 LIST[2] := 2;

 GLOBAL := 1;

 SUB(LIST[GLOBAL]);

 end;

ANS:

parameters passed by value:

LIST[1]=2
LIST[2]=2

parameters passed by reference
LIST[1]=5
LIST[2]=2

parameters passed by name

LIST[1]=3
LIST[2]=5

parameters passed by value-result
LIST[1]=5
LIST[2]=2

4. Show the run-time stack with activation record instances (also called stack frames), including static and dynamic links, when execution reaches position 1 in the following skeletal program.

 procedure BIGSUB;

 procedure A;

 procedure B;

 begin { B }

 … (============ 1

 end; { B }

 procedure C;

 begin { C }

 …

 B;

 …

 end; { C }

 begin { A }

 …

 C;

 …

 end; { A }

 begin { BIGSUB }

 …

 A;

 …

 end; { BIGSUB }

ANS: ~

 |

 |**************<--+--+

 |--------------| | |

 | static Link |--| |

 BIGSUB |--------------| | |

 | dymanic Link |-- |

 |--------------| |

 |**************<---+----+

 |--------------| | | |

 | static Link |-----+ |

 A |--------------| | | |

 | dymanic Link |-----+ |

 |--------------| | |

 |**************<-------------+

 |--------------| | | |

 | static Link |---+ | |

 C |--------------| | | |

 | dymanic Link |--------+ |

 |--------------| | |

 |**************| | |

 |--------------| | |

 | static Link |---+ |

 B |--------------| |

 | dymanic Link |-------------+

 |--------------|

5. The following is a Smalltalk method. Describe each line of code. Be sure to identify objects and messages where appropriate.
 hello: times say: text

 "Prints the text <times> times in the Transcript window"

 (times > 100)

 ifTrue: [Transcript show: 'You will get bored!'. Transcript cr]

 ifFalse: [1 to: times do: [:i | (Transcript show: text) cr]]

ANS:

See URL: http://squeak.cs.uiuc.edu/cphoenix_tutorial/hrefcode.html

6. Consider the following Prolog database.

sibling(X,Y) :- parent(Z,X) , parent(Z,Y).

sister(X,Y) :- female(X), sibling(X,Y).

 brother(X,Y) :- male(X), sibling(X,Y).

male(bo).

male(jeb).

male(jr).

female(jo).

female(peggysue).

parent(peggysue,jr).

parent(peggysue,bo).

parent(peggysue,jo).

parent(jeb,jo).

parent(jeb,bo).

Suppose the following query is made:

sister(jo,bo).

Describes the steps made by the Prolog system in answering the query.

ANS:

The query sister(jo,bo) matches rule 1: sister(X,Y) :- female(X), sibling(X,Y). With X unifying with jo, and Y unifying with bo
The first clause of the rule 1, female(jo) is satisfied by the fact female(jo)

The second clause of rule 1, sibling(jo,bo) matches the head of the rule: sibling(X,Y) :- parent(Z,X) , parent(Z,Y). with X unifying with jo, and Y unifying with bo
The first clause of rule 2, parent(Z,jo) is satisfied by the fact parent(peggysue,jo). with Z unifying with peggysue.

The second clause of rule 2, parent(peggysue,bo) is satisfied by the fact parent(peggysue,bo). this satisfies rule 2.

With rule 2 being satisfied, the clause sibling(jo,bo) is satisfied which in turn means that rule 1 is satisfied and therefore sister(jo,bo) is satisfied with X unifying with jo, and Y unifying with bo.
And the query is satisfied.
7. Given the following function definitions:

 fun product [] : int = 1

 | product (fst::rest) = fst * (product rest);

 fun oneTo 0 = []

 | oneTo n = n::(oneTo (n-1));

 fun fact n = product (oneTo n);

What is output by the function call:

 fact 4;

ANS: 24

