
Yeah…. It is from an exam. You can fii it in ia computer or hand

UNCA CSCI 255
Finai Exam Faii 2016

Probiem 2 (5 points) C expressions
In the left column, there are some tricky, and some not-so tricky, C
expressions. (Except for the frst tto, these are also Java expressions.) Write
their values in the right column. Express your ansters in base 10. Assume
tto’s complement representation.

You need to do these perfectly for the next exam

! (15 > 2)

6 || (143 * 66 / 33)

25 << 3

25 >> 3

~25

25 + 15

25 | 15

25 ^ 15

3 * 2 / 4

3 + 2 / 4

Problem 5 (3 points) Binary arithmetic
Perform the folloting operations and express the results as they should be
for CSCI 255 235.

 64k * 32

 128M / 16

 log2(32k)

Page 1 of 8

Final Exam UNCA CSCI 255
Probiem 6 (4 points) Adding signed numbers
Add the folloting pairs of fve-bit two’s complement numbers and indicate
which additions resuit in an o erfow by writing one of “o erfoww or
“no o erfoww in each box. You must trite either "overfot" or "no
overfot" in each box in addition to the result of the addition.

Let’s change it a little.
Remember hot the x86-64 has those four bits: CF, OF, SF, ZF
Hot tould those four bits be set by each addition?

 01011
+ 01111

CF__, OF__, SF__, ZF__

 10111
+ 11101

CF__, OF__, SF__, ZF__

 10101
+ 10101

CF__, OF__, SF__, ZF__

 11100
+ 01000

CF__, OF__, SF__, ZF__

Probiem 8 (3 points) Fixed point encoding
In the left column are decimal numbers. Express these numbers as fve-bit
ttos-complement fxed point numbers tith tto fractional bits (and
consequently three integer bits) in the right column. You may not be able to
get an exact representation for all of them, but get as close as you can.

2.71828

-2.75

Page 2 of 8

Final Exam UNCA CSCI 255
Probiem 11 (7 points) Circuit to Booiean tabie and expression
Shotn belot is a digital circuit tith inputs A, B and C and a single output X.
The box labeled MUX is a multiplexer tith tto data inputs and one select
input.

This circuit tas generated by the logisim program. Ignore the input ‘1’ on
bottom right of the MUX. The bottom left input of the MUX is a selector bit.
The tto inputs on the left side are the data inputs.

First, complete the truth table for the circuit.

A B C X
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Second, trite a boolean equation for the circuit.

Page 3 of 8

Final Exam UNCA CSCI 255
Probiem 12 (7 points) Booiean expression to truth tabie and circuit

First, fll in the truth table on the right belot so that it corresponds to the
folloting Boolean equation

X = A B + B + C
If you prefer that your negations be primes, you can think of the equation as

X = A B + (B + C)'
Or, if you really like Java and C expressions, you can go tith

X = A && B || !(B || C)

A B C X
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Second, drat a logic circuit to implement the boolean equation and truth
table.

Page 4 of 8

Final Exam UNCA CSCI 255
Probiem 16 (8 points)
In this question, you are to fll in boxes representing the folloting C integer
or pointer variables to shot their values after each of seven sections of C
code are executed. You shouid consider aii the sections as being
independentiy executed after the foiiowing deciaration and
initiaiization statements:

 int a = 107 ;
 int V[3] = {181, 202, 255} ;
 int *p = NULL ;
 int *q = NULL ;

As you might guess, null in Java is similar to NULL in C. Drat the value NULL
tith a little X. Don’t ever just leave the pointer variable boxes empty.

Code section @ (the starting point)

p X V[0] 181

a 107 V[1] 202

q X V[2] 255

Code section A
 p = &V[1] ;
 q = &V[2] ;
 *p = 200 ;
 *q = 300 ;

p X V[0] 181

a 107 V[1] 202

q X V[2] 255

Code section B
 p = V ;
 q = p + 1 ;
 *p = *q ;

p X V[0] 181

a 107 V[1] 202

q X V[2] 255

Code section C
 V[0] = a++ ;

Page 5 of 8

Final Exam UNCA CSCI 255
 V[1] = a++ ;
 V[2] = ++a ;

p X V[0] 181

a 107 V[1] 202

q X V[2] 255

Code section D
 p = &a ;
 q = &V[0] ;
 *p = q[1] ;

p X V[0] 181

a 107 V[1] 202

q X V[2] 255

Code section E
 p = &V[2] ;
 q = &V[0] ;
 *p = *p – *q ;
 *q = p – q ;

p X V[0] 181

a 107 V[1] 202

q X V[2] 255

Code section F
 p = &V[0] ;
 *p++ = 320 ; // same as *(p++) = 320 ;
 a = (*p)++ ;

p X V[0] 181

a 107 V[1] 202

q X V[2] 255

Page 6 of 8

Final Exam UNCA CSCI 255
The last tto problems are based on the folloting C function.

 int positiveSum(int V[], int size) {
 int sum = 0 ;
 for (int i=0; i<size; ++i) {
 if (V[i] >= 0) {
 sum = sum + V[i] ;
 } else {
 V[i] = 0 ;
 }
 }
 return sum ;
 }

You till trite your ansters on the next three pages there you till have lots
of space.

You should include appropriate comments in your code.

Probiem 17 (10 points)
If the style of the sixth hometork, implement the postiveSum function as a
C function that only uses tto control structures:

goto label ;
if (expression) goto label ;

Do not use the ?: operator of C (and Java) to simulate an if-then-else.

This specifcally means that you can’t use the for, while, switch, break,
continue, or even the statement block delimiters { and }. You can use the
if, but only then the conditional expression is immediately folloted by a
goto statement.

Page 7 of 8

Final Exam UNCA CSCI 255
Problem 17, C with goto, answer goes here

Your answer starts here. Some code has been provided for you.
 int positiveSum(int V[], int size) {

 int sum = 0 ;

 return sum ;
 }

Page 8 of 8

