
UNCA CSCI 235
Final Exam Spring 2018

May 8, 2018 3:00 pm – 5:30 pm

This is a closed book and closed notes exam. Communication with anyone other than
the instructor is not allowed during the exam. Furthermore, calculators, cell phones,
and any other electronic or communication devices may not be used during this
exam. Anyone needing a break during the exam must leave their exam with the
instructor. Cell phones or computers may not be used during breaks.

This exam must be turned in before 5:30 PM.

Name:________________________________

Problem 1: C expressions (10 points)
In the left column, there are twenty tricky and not-so tricky C expressions.
Write their values in the right column. Express your answers in simple base
10 expressions, such as 235 or -235. You may assume that all of these
numbers are stored in 16-bit two’s complement representation, the usual
short.

022 18

0x22 34

22 >> 3 2

22 << 3 176

22 / 3 * 5 35

22 * 3 / 5 13

22 & 7 6

22 && 7 1

22 | 7 23

22 || 7 1

22 ^ 7 17

22 > 7 1

~22 -23

!22 0

22*0 && 10000/235 0

Page 1 of 11

Final Exam UNCA CSCI 235

Problem 2: Range (2 points)
What is the range of values that can be stored in an 8-bit twos-complement
numbers? (By the way, the byte of Java is an 8-bit twos-complement
number.)

-128 to 127

Problem 3: Decimal to two’s complement conversion (4 points)
Convert the following four signed decimal numbers into six-bit two’s
complement representation. Some of these numbers may be outside the
range of representation for six-bit two's complement numbers. Write “out-of-
range” for those cases.

-10 -1

10

40

Problem 4: Q4.4 to decimal conversion (4 points)
Convert the following four Q4.4 two’s complement numbers (four fixed and
four fractional bits) into signed decimal representation.

00010001
1 + 1/16
1.0625

10001000
-8 + 0.5

-7.5
11111111
-1 + 15/16
-0.0625

01000000

4

Page 2 of 11

Final Exam UNCA CSCI 235

Problem 5: Decimal to Q4.4 conversion (4 points)
Convert the following three signed decimal numbers into Q4.4 two’s
complement numbers (four fixed and four fractional bits). If you can’t
express the number exactly, give the nearest Q4.4 representation.

-1.25

 11101100 (-2 + 0.75)

0.2

 00000011 (3/16 or 0.1875)

2.5

 00101000

Problem 6: Floating point arithmetic (2 points)
I’ve tried both of these following C floating-point multiplications in gdb and
one results in 1.0 and one does not:

5 * 0.2
2 * 0.5

Which is 1.0? Give an explanation for your choice.

2 * 0.5 will be 1.0, because 0.5 is a power of 2. It can
be represented exactly. 0.2 will be approximated.

Page 3 of 11

Final Exam UNCA CSCI 235

Problem 7: Adding numbers with flags (8 points)
Add the following pairs of six-bit numbers. Based on the result of this
addition, set the four x86-64 status bits: CF (carry), OF (overflow), SF (sign)
and ZF (zero).

 010010
+ 010010
 100100

CF_0, OF_1, SF_1, ZF_0

 110000
+ 010000
 000000

CF_1, OF_0, SF_0, ZF_1

 011111
+ 110000
 001111

CF_1, OF_0, SF_0, ZF_0

 111000
+ 110000
 101000

CF_1, OF_0, SF_1i, ZF_0

Problem 8: CSCI arithmetic (4 points)
Perform the following operations and express the results as they should be
for CSCI 235 and other geeky environments.

 16 ki * 32 512 ki

 2 Mi / 8 256 ki

 log2(64 ki) 16

Page 4 of 11

Final Exam UNCA CSCI 235

Problem 9: Expected time (2 points)
Assume that 80% of the time a requested memory access is found in the
cache and retrieved in 20 n sec; and that the other 20% of the time, 40 μ sec
is required. What is the average time required to perform a read request?

0.8 * 20 nsec + 0.2 * 40 μsec = 0.8 * 0.020 μsec + 0.2 * 40 μsec
0.016 μsec + 8 μsec = 8.016 μsec

Problem 10: goto programming (8 points)
In the style of a recent homework, implement the C function shown below
using only two control structures:

goto label ;
if (expression) goto label ;

This specifically means that you can’t use the for, while, switch, break,
continue, or even the statement block delimiters { and }. You can use the
if, but only when the conditional expression is immediately followed by a
goto statement. Also, do not use the ?: operator of C (and Java) to simulate
an if-then-else.

 int huh(int p, int *d) {
 if (p > 0) {
 ++*d ;
 }
 return p + *d ;
 }

Write your solution in the space below...

int huh(int p, int *d) {

 if (p <= 0) goto skipIt ;
 ++*d ;
skipIt:
 return p + *d ;
}

Page 5 of 11

Final Exam UNCA CSCI 235

Problem 11: Command line arguments (4 points)
This is very tricky! Suppose you have written the following program and
compiled and linked it into an executable called evilProg.

#include <stdio.h>
int main(int argc, char *argv[]) {
 printf("%s %d %s%s\n",

 argv[1], argc-2, *(argv+2), argv[3]) ;
 return 0 ;
}

What command line arguments do you pass to evilProg to make it print this
single output line?

won too 3 for
There is more than one correct answer.

./evilProg "won two" f or x

Problem 12: C Programming (16 points)
Write a program that reads (using scanf) a sequence of time-of-day value
from a terminated standard input stream. The times are entered in
“traditional” US time-of-day format as shown below.

 12:10:00 AM 7:10:03 AM
 12:05:10 PM 5:30:00 PM

Your output should be a neatly formatted list of ISO 8601 standard 24-hour
clock times followed by a count of the number of clock times in the input
stream. So, for the above example, the output should be:

 00:10:00
 07:10:03
 12:05:10
 17:30:00
Time read: 4

You may assume that the input contains properly formatted US time-of-day
values but that white spaces (spaces, tabs, or new lines) can occur before
and after the numbers and the AM and PM tokens. (This actually makes the
programming task with scanf a little easier.)

Page 6 of 11

Final Exam UNCA CSCI 235

Assume that 12:00:00 AM is midnight (00:00:00) and 12:00:00 PM is noon
(12:00:00). That’s what the US Government Printing Office decided in 2008.
Also, it’s the easiest to program.

Write your answer in the space below

// Your answer goes here.
#include <stdio.h>
int main(int argc, char *argv[]) {
 int timeCount = 0 ;
 int usHour, minute, second ;
 int isoHour ;
 char halfDay[3] ;
 while (scanf("%d:%d:%d %2s",
 &usHour, &minute, &second,
 halfDay) == 4) {
 timeCount++ ;
 // Before or after noon?
 if (halfDay[0] == 'A') {
 isoHour = 0 ;
 } else {
 isoHour = 12 ;
 }
 // Have to handle 12 differently...
 if (usHour != 12) {
 isoHour = isoHour + usHour ;
 }
 printf(" %02d:%02d:%02d\n",
 isoHour, minute, second) ;
 }
 printf("Time read: %8d\n", timeCount) ;
}

Page 7 of 11

Final Exam UNCA CSCI 235

Problem 13: Expression to truth table and circuit (8 points)

First, fill in the truth table on the right below so that it corresponds to the
following Java (or C or C++) assignment:

X = (A || !B) && C
If you prefer the computer engineering style, you can think of the equation
as

X = (A + B’) C

A B C X
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Second, draw a logic circuit (AND, OR, …) to implement the boolean
expression and corresponding truth table.

Page 8 of 11

Final Exam UNCA CSCI 235

Problem 14: Truth table to expression and circuit (8 points)

The truth table below specifies a Boolean function with three inputs, A, B,
and C and one output X.

A B C X
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

First, write a Boolean expression corresponding to the function specified in
the table. (You do not need to write an “efficient” expression.)
!A && !B && C || !A && B && !C || A && !B && !C || A && !B && C

or
!B && C || !A && B && !C || A && !B

Second, draw a logic circuit (AND, OR, ...) to implement the boolean
expression and corresponding truth table.

Page 9 of 11

Final Exam UNCA CSCI 235

Problem 15: Pointers (8 points)
In this question, you are to fill in boxes representing the following C integer
or pointer variables to show their values after each of seven sections of C
code are executed. You should consider all the sections as being
independently executed after the following declaration and
initialization statements:

 int V[3] = {181, 202, 255} ;
 int *p = NULL ;
 int *q = NULL ;

As you might guess, null in Java is similar to NULL in C. Draw the value NULL
with a little X. Don’t ever just leave the pointer variable boxes empty.

 p = V ;
 q = V+1 ;
 *p = 200 ;
 *q = 300 ;

p &V[0] V[0] 200

V[1] 300

q &V[1] V[2] 255

 q = &V[1] ;
 p = q++ ;
 *p = *q ;

p &V[1] V[0] 181

V[1] 255

q &V[2] V[2] 255

 p = &V[0] ;
 q = &V[2] ;
 *p = *q – *p ;
 *q = q - p ;

p &V[0] V[0] 74

V[1] 202

q &V[2] V[2] 2

 p = &V[0] ;
 *(p++) = 235 ;
 (*p) = 300 ;

p &V[1] V[0] 235

V[1] 300

q X V[2] 255

Page 10 of 11

Final Exam UNCA CSCI 235

Problem 16: Definitions (10 points)
To finish off, give short definitions of the following concepts, functions,
hacks, types, variables, etc., as you have seen in this course (including its
labs). Feel free to skip two: I will grade the best six of eight definitions.

digitalWrite()

x86-i64

Virtual memory

stack

digitalRead()

Randal E. Bryant

Raspberry Pi

current limiting resistor

Page 11 of 11

