The good sorts of sorts

Sorting - Keys and Records

Consider sorting a list of 1000 elements

Engineer a solution
Worse, best, and average times
Selection sort
Always bring the smallest remaining to the front.
Worse and best times are the same
About 500,000 comparisons on average
But only 1,000 moves
Insertion sort
Increase the sorted first few
Worse, best, and average times differ
About 250,000 comparisons on average
But the same number of moves

Bubble sort

An old favorite with little merit
Bring the bigger to the end of the line
While you "bubble up" the smaller
Compute the probability that some element in last tenth belongs in the first tenth Increased complexity for lower performance

Measure the average move
The average element needs to be moved though one-third of the list
Let's use some calculus to figure this one out
About 333,333 total slots to move
Averages, in terms of N , size of list
Selection sort $\quad \mathrm{N}^{2} / 2$
Insertion sort $\quad \mathrm{N}^{2} / 4$
Total moves $\quad \mathrm{N}^{2} / 3$

A different sort of sort

Find the half-way point of each list
Time: $\sim 1,500$, if you really don't know the size of the list
Use insertion sort on each half of list
Time: $2 *(500 * 500 / 4)$ or 125,000
Merge the two lists
Time: 1000
Total time: ~130,000
Two sorts in half the time!

Merge sort

Continue halving until you are sorting small lists
See the spreadsheet

Bad sorts

Time is proportional to the N^{2}
Good sorts
Time is proportional to $\mathrm{N} \log \mathrm{N}$
In theory this is the best
Really good sorts when you really know your data
Time can be proportional to N
Example: Library Sort

Algorithm complexity

Finding the winner for large input sets
Ignores "constant" differences
Heavily used in graduate study in computer science
And becoming popular with mathematicians and engineers
Informally drawing and formally defining big-O
$f(x)$ is $O(g(x))$ if
there exists K and B such that

$$
\text { for all } x>B, f(x)<K g(x)
$$

Examples:

$$
\begin{aligned}
& 4 * x^{2}+15000 * x+3000000 \text { is } O\left(x^{2}\right) \\
& 4 * x^{2}+15000 * x+3000000 \text { is } \mathrm{O}\left(x^{20}\right) \\
& 4 * x^{2}+15000 * x+3000000 \text { is not } O\left(x^{1.999}\right)
\end{aligned}
$$

Application of big-O to C-like programs

```
X = expression without function calls ;
    O(1)
if (test) {
    if-part ;
} else {
    else-part ;
}
        MAX(T(test), T(if-part), T(else-part)) ;
Statement1 ;
Statement2 ;
    MAX(T(Statement1), T(Statement2))
for(i=0; i<N; ++i) {
    Statement ;
}
    N * T(Statement)
for(i=1; i<N; i = 2*i) {
    Statement ;
}
    log N * T(Statement)
```

The running time doubles
Never, if $\mathrm{O}(1)$
When input size multiplies by itself $\left(\mathrm{N}\right.$ to $\left.\mathrm{N}^{*} \mathrm{~N}\right)$, if $\mathrm{O}(\log \mathrm{N})$
When input size doubles, if $\mathrm{O}(\mathrm{N})$
When input size increases by factor of ~ 1.4, if $\mathrm{O}\left(\mathrm{N}^{2}\right)$
When input size increases by one, if $\mathrm{O}\left(2^{\mathrm{N}}\right)$

