
ECE 209 Algorithm complexity

March 2008 Page 1 of 3 J Dean Brock

The good sorts of sorts

Sorting – Keys and Records

Consider sorting a list of 1000 elements
 Engineer a solution
 Worse, best, and average times

Selection sort
 Always bring the smallest remaining to the front.
 Worse and best times are the same
 About 500,000 comparisons on average
 But only 1,000 moves

Insertion sort
 Increase the sorted first few
 Worse, best, and average times differ
 About 250,000 comparisons on average
 But the same number of moves

Bubble sort

An old favorite with little merit
Bring the bigger to the end of the line
 While you “bubble up” the smaller

 Compute the probability that some element in last tenth belongs in the first tenth
 Increased complexity for lower performance

Measure the average move
 The average element needs to be moved though one-third of the list
 Let’s use some calculus to figure this one out
 About 333,333 total slots to move

Averages, in terms of N, size of list
 Selection sort N2/2
 Insertion sort N2/4
 Total moves N2/3

ECE 209 Algorithm complexity

March 2008 Page 2 of 3 J Dean Brock

A different sort of sort
 Find the half-way point of each list
 Time: ~1,500, if you really don't know the size of the list
 Use insertion sort on each half of list
 Time: 2*(500*500/4) or 125,000
 Merge the two lists
 Time: 1000
 Total time: ~130,000
 Two sorts in half the time!

Merge sort
 Continue halving until you are sorting small lists
 See the spreadsheet

Bad sorts
 Time is proportional to the N2
Good sorts
 Time is proportional to N log N
 In theory this is the best
Really good sorts when you really know your data
 Time can be proportional to N
 Example: Library Sort

Algorithm complexity
 Finding the winner for large input sets
 Ignores “constant” differences
 Heavily used in graduate study in computer science
 And becoming popular with mathematicians and engineers

Informally drawing and formally defining big-O
 f(x) is O(g(x)) if
 there exists K and B such that

for all x > B, f(x) < K g(x)
 Examples:
 4*x2 + 15000 *x + 3000000 is O(x2)
 4*x2 + 15000 *x + 3000000 is O(x20)
 4*x2 + 15000 *x + 3000000 is not O(x1.999)

ECE 209 Algorithm complexity

March 2008 Page 3 of 3 J Dean Brock

Application of big-O to C-like programs
 X = expression without function calls ;
 O(1)

 if (test) {
 if-part ;
 } else {
 else-part ;
 }
 MAX(T(test), T(if-part), T(else-part)) ;

 Statement1 ;
 Statement2 ;
 MAX(T(Statement1), T(Statement2))

 for(i=0; i<N; ++i) {
 Statement ;
 }
 N * T(Statement)

 for(i=1; i<N; i = 2*i) {
 Statement ;
 }
 log N * T(Statement)

The running time doubles
 Never, if O(1)
 When input size multiplies by itself (N to N*N), if O(log N)
 When input size doubles, if O(N)
 When input size increases by factor of ~1.4, if O(N2)
 When input size increases by one, if O(2N)

