Quiz 2 Solution CSCI 255 Spring 2001

9 April, 2001

Problem 1 (64 points):

3:15-3:47

In this problem you are asked to write **eight** *independent* sections of LC-2 assembly code to set registers R0 or R1 or LC-2 memory locations based on constants, the present values of R3 and R4, or LC-2 memory locations. You may use registers R6 or R7 as "scratch" registers but should not modify any other registers. You must assume that your code will be located somewhere between memory locations x3000 and x30FF. You may use .fill's when needed to initial memory locations. You should assume that these .fill's would also be stored in memory locations x3000 to x30FF.

In these subproblems, the code to implement is given in the psuedo-C notation used in class lectures. Rn will be used as a reference to LC-2 register n. M[n] will be used as a reference to LC-2 memory location n.

There are many possible right answers. These are probably the shortest.

R0 ← 5 * R3 ;		ADD	R0,R3,R3
		ADD	R0,R0,R0
		ADD	R0,R0,R3
R0 ← R3 - R4 ;		NOT	R0,R4
		ADD	R0,R0,#1
		ADD	R0,R0,R3
R0 ← R3 & R4 ;		AND	R0,R3,R4
if (R3 == 15)		ADD	R0,R4,#0
R0 ← R4 ;		ADD	R6,R3,#-15
else		BRz	DONE
R0 ← R4 + 1 ;		ADD	R0,R0,#1
	DONE		
R0 ← R4 ;		LD	6,M107
while (R0 < 107)		ADD	R0,R4,#0
R0 ← R0 + R0 ;		BR	MDLOOP
	BGLOOP	ADD	R0,R0,R0
	MDLOOP	ADD	R7,R6,R0
		BRn	BGLOOP
		•••	
	M107	.FILL	#-107

M[x3100] ← M[x3100] + 5;			
M[x4100] ← M[x4100] + 5 ;		LDI ADD STI	R6,PTR R6,R6,#5 R6,PTR
	PTR	.FILL	x3010
$R0 \leftarrow R3 + 1 ;$ $R1 \leftarrow R4 + '1' ;$		ADD LD ADD 	R0,R3,#1 R6,ASC1 R1,R4,R6
	ASC1	.FILL	X31

Problem 2 (16 points):

3:47-3:55

Translate into LC-2 machine language (binary) program the LC-2 assembly language program shown below:

A fairly common problem was starting the first instruction (LD) at x3001 rather than x3000.

	.ORIG	x3000		
	LD	R1,MX		
	LDI	R2,MX		
	LEA	R3,MX		
	LDR	R4,R1,#1	0110100001000001	
	HALT		1111000000100101	
MX	.FILL	0x3006	0011000000000110	
MY	.FILL	0x3007	001100000000111	
MZ	.FILL	0x3008	001100000001000	
	.END			

Problem 3 (12 points):

3:55-4:01

What are the values of registers R1 to R4 after the LC-2 assembly language program in Problem 2 is executed?

If you (incorrectly) assumed that MX was located at x3006, then R1, R2, and R3 would be set to x3006 and R4 would be set to x3007.

Quiz 5 CSCI 255 Spring 2002 Solution 1 April, 2002

Problem 1 (72 points)

Write four separate LC/2 assembly programs to compute the following four C statements.

```
R4 = 4*R3 - 16;
                                R4,R3,R3
                ADD
                ADD
                                R4, R4, R4
                                R4,R4,#-16
                ADD
Grading
        +17
                Correct but more than 3 memory accesses
        +16
                Correct but more than 5 memory accesses
                Correct but more than 7 memory accesses
        +15
        -5
                Modifies register other than R3
        -5
                Simple logic error (like doubling too few or too many times)
R2 = R6 - R5 - 1;
                NOT
                                R2,R5
                                                 ; Remember ~R5 is -R5-1
                ADD
                                R2,R6,R2
Grading
        +17
                Correct but more than 2 memory accesses
        +16
                Correct but more than 4 memory accesses
        +15
                Correct but more than 6 memory accesses
        -5
                Modifies register other than R2
                Simple logic error (not adding in 1 for negation, adding -1 then inverting)
     (R2 < 0)
        R3 = R7 + 150;
else
        R4 = R7 + 150;
                                R0, SAVER0
                ST
                                R0,C150
                LD
                ADD
                                R2,R2,#0
                BRn
                                STIN4
                ADD
                                R3,R0,R7
                                RST0
                BRnzp
STIN4
                ADD
                                R4,R0,R7
                                R0, SAVER0
RST0
                LD
C150
                                #150
                .FILL
SAVER0
                .BLKW
Grading
        +17
                Correct but more than 11 memory accesses
        +16
                Correct but more than 14 memory accesses
        +15
                Correct but more than 17 memory accesses
        +17
                A lot of duplicate code for R7 + 150
                Modifies register other than R3 (if R2<0) or R4 (if R2≥0)
        -5
        -6
                One control structure problem (no BR to common end point, misdirected branch)
        -9
                Multiple control structure problems
                Simple logic error (adding in 150 without first loading)
```

CSCI 255 1 of 3 Ouiz 4