Quiz 2 Solution CSCI 255 Spring 2001

9 April, 2001

Problem 1 (64 points):
3:15-3:47
In this problem you are asked to write eight independent sections of LC-2 assembly code to set registers R0 or R1 or LC-2 memory locations based on constants, the present values of R3 and R4, or LC-2 memory locations. You may use registers R6 or R7 as "scratch" registers but should not modify any other registers. You must assume that your code will be located somewhere between memory locations x3000 and x30FF. You may use .fill's when needed to initial memory locations. You should assume that these .fill's would also be stored in memory locations x 3000 to $\times 30 \mathrm{FF}$.

In these subproblems, the code to implement is given in the psuedo-C notation used in class lectures. Rn will be used as a reference to LC-2 register n. M $[n]$ will be used as a reference to LC-2 memory location n.

There are many possible right answers. These are probably the shortest.

R0 $\leftarrow 5 *$ R3 ;		$\begin{aligned} & \text { ADD } \\ & \text { ADD } \\ & \text { ADD } \end{aligned}$	$\begin{aligned} & \text { RO, R3, R3 } \\ & \text { RO, RO, RO } \\ & \text { RO, RO, R3 } \end{aligned}$
$\mathrm{R} 0 \leftarrow \mathrm{R} 3-\mathrm{R} 4$;		$\begin{aligned} & \text { NOT } \\ & \text { ADD } \\ & \text { ADD } \end{aligned}$	$\begin{aligned} & \text { RO, R4 } \\ & \text { RO, RO, \#1 } \\ & \text { R0, RO, R3 } \end{aligned}$
R0 \leftarrow R3 \& R4 ;		AND	R0, R3, R4
$\begin{aligned} & \text { if }(R 3==15) \\ & \text { R0 } \leftarrow R 4 ; \\ & \text { else } \\ & R 0 \leftarrow R 4+1 ; \end{aligned}$	DONE	$\begin{aligned} & \hline \text { ADD } \\ & \text { ADD } \\ & \text { BRz } \\ & \text { ADD } \end{aligned}$	$\begin{aligned} & \text { R0,R4,\#0 } \\ & \text { R6, R3, \#-15 } \\ & \text { DONE } \\ & \text { R0,R0, \#1 } \end{aligned}$
$\begin{aligned} & \mathrm{R} 0 \leftarrow \mathrm{R} 4 ; \\ & \text { while }(\mathrm{R} 0<107) \\ & \mathrm{R} 0 \leftarrow \mathrm{R} 0+\mathrm{RO} ; \end{aligned}$	BGLOOP MDLOOP M107	LD ADD BR ADD ADD BRn FILL	$\begin{aligned} & \hline 6, \text { M107 } \\ & \text { R0,R4, \#0 } \\ & \text { MDLOOP } \\ & \text { R0,R0,R0 } \\ & \text { R7,R6,R0 } \\ & \text { BGLOOP } \\ & \\ & \#-107 \end{aligned}$

$\mathrm{M}[\mathrm{x} 3100] \leftarrow \mathrm{M}[\mathrm{x} 3100]+5$;			
$\mathrm{M}[\mathrm{x} 4100] \leftarrow \mathrm{M}[\mathrm{x} 4100]+5$;		LDI	R6, PTR
		ADD	R6,R6, \#5
		STI	R6, PTR
$\mathrm{R} 0 \leftarrow \mathrm{R} 3+1$;		ADD	R0,R3, \#1
$\mathrm{R} 1 \leftarrow \mathrm{R} 4+\prime 1^{\prime}$;		LD	R6, ASC1
		ADD	R1, R4, R6
	ASC1	FILL	X31

Problem 2 (16 points):

Translate into LC-2 machine language (binary) program the LC-2 assembly language program shown below:

A fairly common problem was starting the first instruction (LD) at x3001 rather than $\mathbf{x 3 0 0 0}$.

	.ORIG	x3000	
	LD	R1, MX	
	LDI	R2, MX	
	LEA	R3,MX	0110100001000001
	LDR	R4,R1,\#1	1111000000100101
MX	HALT		0011000000000110
MY	FILL	0×3006	0011000000000111
MZ	FILL	0×3007	0×3008
	FND		0011000000001000

Problem 3 (12 points):
3:55-4:01
What are the values of registers R1 to R4 after the LC-2 assembly language program in Problem 2 is executed?

$$
\begin{aligned}
& R 1=x 3006 \\
& R 2=x 3007 \\
& R 3=x 3005 \\
& R 4=x 3008
\end{aligned}
$$

If you (incorrectly) assumed that MX was located at x3006, then R1, R2, and R3 would be set to $\mathbf{x} 3006$ and $R 4$ would be set to $\times 3007$.

Quiz 5 CSCI 255 Spring 2002 Solution
 1 April, 2002

Problem 1 (72 points)

Write four separate $\mathrm{LC} / 2$ assembly programs to compute the following four C statements.

