Problem 1 (15 points) Data Path

In the table below, the columns correspond to two LC/3 instructions and the rows to the six phases of the LC/3 instruction cycle as described in the textbook. Within this table describe how the PC, MAR, MDR, and register files of the LC/3 datapath are used or modified in each instruction cycle phase for the two instructions. [The FETCH and DECODE rows only have one cell, since these two phases act similarly for all instructions.]

Rubric and common problems:
It's most important to know how this internal registered are used and in what order that are accessed and modified rather than matching actions with specific phases. The detailed answer below comes from a careful reading of section 4.3.2 and particularly Example 4.4.
The grading was complex. There are 10 "actions" performed in the instruction and there are 3 no-action cells. 1.5 points was given for identifying each of these. Incorrect statement were marked, but generally ignored in grading though points were sometimes deducted for serious errors. Of course, no answer received more than 15 points and no answer less than 0 points.

	$A D D R 3, R 4, ~ \# 5$	$\mathrm{LDR} \mathrm{R3}, \mathrm{R4}, \mathrm{\# 5}$
FETCH	The PC is moved into the MAR (memory address register) while the PC is "simultaneously" incremented. The memory then reads a value (the next instruction) into the MDR (memory data register).	
DECODE	No action on targeted registers on this phase.	
EVALUATE ADDRESS	Skipped on ADD.	R4 is added 5.
FETCH OPERANDS	R4 is obtained from the register file.	The sum of R4 and 5 is sent to the MAR. The memory reads a data value into MDR.
EXECUTE	The ALU adds R4 and 5.	Skipped on LDR.
STORE RESULT	Result is stored in R3.	Result is stored in R3.

Problem 2 (15 points) Memories
Using the symbol table shown below

BASIE	$x 3442$
CARMICHAEL	$x 3462$
DORSEY	$x 3482$
ELLINGTON	$x 34 A 2$

write the appropriate 16-bit LC-3 machine language word, in binary or hex, for each assembly language statement shown in the left column. Assume that the instruction is located at address x3400 in all cases. If the assembly language statement is illegal, state the reason why this is so.

Rubric and common problems:
Generally 0.5 points were taken off for each mistake.
Many people did unnecessary translations from hexadecimal to decimal and back. For example, if the target address is $\times 3462$ and the PC is x3401, the offset is $\times 61$. Subtractions like that can be made directly in hexadecimal. The hexadecimal can then be translated into binary as 001100001 without conversion to decimal. One common, and time consuming, problem was inappropriately treating 61 as a decimal number and translating it into the binary number 111101.
On the last problem, some people pointed out that the standard LC/3 does not support a trap with number $\times 55$.

ADD	R0,R2,\#12	0001000010101100
AND	R7,R7,x12	18 (x12) too big for signed 5 bits
AND	R7,R7,R7	0101111111000111
BRnp	DORSEY	0000101010000001
BRpz	BASIE	BRpz is not a valid opcode
LD	R3, CARMICHAEL	0010011001100001
LEA	R2,ELLINGTON	1110010010100001
NOT	R5,R6	1001101110111111
STI	R5, BASIE	1011101001000001
STR	R3, R4, x14	0111011100010100
TRAP	x55	1111000001010101

Problem 3 (15 points)

The binary program shown in the left column below is loaded into memory at location x3000. In the right column, write the LC/3 assembly instructions or appropriate psuedo-ops corresponding to this program. Be sure to include appropriate labels and .ORIG and .END statements.

Rubric and common problems:
Many people did not use labels and had answers like:
LDI R4,x3007
for the second instruction. This is not a legal LC/3 instruction. Both of the following are correct LC/3 assembly language instructions:

LDI R4,\#5
LDI R4,x5
even though they are difficult to understand. By the way
LDI R4,x3006
is even a bit more incorrect, as it doesn't take into account that the offset is added to the PC, which is one more than the address of the current instruction.
Generally 0.5 points were deducted for each mistake.

Binary		Assembly	
		.ORIG	x3000
0101000000100000		AND	R0,R0,\#0
1010100000000101		LDI	R4, Lable07
0000011000000001	Lable02	BRzp	Lable04
0001000000100001		ADD	R0,R0,\#1
0001100100000100	Lable04	ADD	R4,R4,R4
0000101111111100		BRnp	Lable02
1111000000100101		HALT	
0100000000000000	Lable07	.FILL	x4000
		.END	

Problem 4 (15 points)

Assume that the eight LC/3 registers have the values shown on the left below and that the eight words of memory starting at memory location x3020 have the values shown on the right.

Register	Value
R0	$x 0000$
R1	$x 0001$
R2	$x 0002$
R3	$x 0003$
R4	$x 0004$
R5	$x 0005$
R6	$x 4444$
R7	$x 5555$

Address	Value
x 3020	x 0000
x 3021	x 0001
x 3022	x 0002
x 3023	x 0003
x 3024	x 0004
x 3025	x 0005
x 3026	x 6666
x 3027	x 7777

For six of the following seven unanswered cases shown below, write either a single LC/3 instruction or a series of two $\mathrm{LC} / 3$ instructions to load the value stored in the specified memory location into register 5. Assume that each instruction is located at memory address x3010.

Only three of the seven require the use of two instructions. Because I'm only grading six of the seven, you can miss one without penalty. In the difficult cases, you'll do well to give an explanation of your strategy.

Rubric and common problems:
The point of this question was to test facility with LD, LDI, and LDR and knowledge of the restrictions imposed by the size of instruction bit fields. The question really should have prohibited.FILL's, since they make it a bit too easy. (Also, that x3111 was supposed to be x3101.) 2.5 points, with liberal partial credit, were given to each correct answer for the best six of seven answers.

x3021	LD R5, x10
x3111	$\begin{array}{ll} \text { LEA } & \text { R5 }, \mathrm{xF} 0 \\ \text { LDR } & \text { R5,R5, } \mathrm{x} 10 \end{array}$
x4424	LDR R5,R6,\#-32
x4444	LDR R5,R6,\#0
x4464	$\begin{array}{ll} \text { ADD } & R 5, R 6, \times 10 \\ \text { LDR } & R 5, R 5, x 10 \end{array}$
x6666	LDI R5, x15
x6667	LD R5,x15 LDR R5,R5,\#1
$x 8888$	$\begin{array}{ll} \text { ADD } & \text { R5,R4,R4 } \\ \text { LDR } & \text { R5,R5, \#0 } \end{array}$

Problem 5 (40 points)

In this long question of many parts, write little (many only two or three instructions long) LC/3 programs to solve the following small problems. Answers that are unnecessary long or complicated will not receive full credit.

3 points
Some people forgot set R3 to 0 before adding in five
Write LC/3 code to set R3 to 5 .
AND R3,

ADD R3,R3, \#5

8 points
Write LC/3 code to test if R5 contains the ASCII character for ' n ' or for ' c '. If so, set R3 to contain the value 1. Otherwise, set R3 to contain 0 .

| | BRp LOOP | ; ; do it 255 times |
| :--- | :--- | :--- | :--- |
| | | |
| K255 | .FILL \#256 | |
| Kx4000 | .FILL $\times 4000$ | |

