
ECE 109 Sections 602 to 605
Exam 2 Fall 2007 Solution

6 November, 2007

Problem 1 (15 points) Data Path
In the table below, the columns correspond to two LC/3 instructions and the rows to the six
phases of the LC/3 instruction cycle as described in the textbook. Within this table describe how
the PC, MAR, MDR, and register files of the LC/3 datapath are used or modified in each
instruction cycle phase for the two instructions. [The FETCH and DECODE rows only have one
cell, since these two phases act similarly for all instructions.]

Rubric and common problems:
It's most important to know how this internal registered are used and in
what order that are accessed and modified rather than matching actions
with specific phases. The detailed answer below comes from a careful
reading of section 4.3.2 and particularly Example 4.4.
The grading was complex. There are 10 “actions” performed in the
instruction and there are 3 no-action cells. 1.5 points was given for
identifying each of these. Incorrect statement were marked, but
generally ignored in grading though points were sometimes deducted for
serious errors. Of course, no answer received more than 15 points and
no answer less than 0 points.

ADD R3, R4, #5 LDR R3, R4, #5

FETCH
The PC is moved into the MAR (memory address register) while the PC is
“simultaneously” incremented. The memory then reads a value (the next
instruction) into the MDR (memory data register).

DECODE No action on targeted registers on this phase.

EVALUATE
ADDRESS

Skipped on ADD. R4 is added 5.

FETCH
OPERANDS

R4 is obtained from the register file. The sum of R4 and 5 is sent to the
MAR. The memory reads a data value
into MDR.

EXECUTE The ALU adds R4 and 5. Skipped on LDR.

STORE
RESULT

Result is stored in R3. Result is stored in R3.

ECE 109 602-605 1 of 7 Exam 2

Problem 2 (15 points) Memories
Using the symbol table shown below

BASIE x3442
CARMICHAEL x3462
DORSEY x3482
ELLINGTON x34A2

write the appropriate 16-bit LC-3 machine language word, in binary or hex, for each assembly
language statement shown in the left column. Assume that the instruction is located at address
x3400 in all cases. If the assembly language statement is illegal, state the reason why this is so.

Rubric and common problems:
Generally 0.5 points were taken off for each mistake.
Many people did unnecessary translations from hexadecimal to decimal
and back. For example, if the target address is x3462 and the PC is
x3401, the offset is x61. Subtractions like that can be made directly
in hexadecimal. The hexadecimal can then be translated into binary as
0 0110 0001 without conversion to decimal. One common, and time
consuming, problem was inappropriately treating 61 as a decimal number
and translating it into the binary number 111101.
On the last problem, some people pointed out that the standard LC/3
does not support a trap with number x55.

 ADD R0,R2,#12 0001 000 010 1 01100
 AND R7,R7,x12 18 (x12) too big for signed 5 bits
 AND R7,R7,R7 0101 111 111 000 111
 BRnp DORSEY 0000 101 010000001
 BRpz BASIE BRpz is not a valid opcode
 LD R3,CARMICHAEL 0010 011 001100001
 LEA R2,ELLINGTON 1110 010 010100001
 NOT R5,R6 1001 101 110 111111
 STI R5,BASIE 1011 101 001000001
 STR R3,R4,x14 0111 011 100 010100
 TRAP x55 1111 0000 0101 0101

ECE 109 602-605 2 of 7 Exam 2

Problem 3 (15 points)
The binary program shown in the left column below is loaded into memory at location x3000. In
the right column, write the LC/3 assembly instructions or appropriate psuedo-ops corresponding
to this program. Be sure to include appropriate labels and .ORIG and .END statements.

Rubric and common problems:
Many people did not use labels and had answers like:

LDI R4,x3007
for the second instruction. This is not a legal LC/3 instruction. Both
of the following are correct LC/3 assembly language instructions:

LDI R4,#5
LDI R4,x5

even though they are difficult to understand. By the way
LDI R4,x3006

is even a bit more incorrect, as it doesn't take into account that the
offset is added to the PC, which is one more than the address of the
current instruction.
Generally 0.5 points were deducted for each mistake.

Binary Assembly
 .ORIG x3000

0101000000100000 AND R0,R0,#0
1010100000000101 LDI R4,Lable07
0000011000000001 Lable02 BRzp Lable04
0001000000100001 ADD R0,R0,#1
0001100100000100 Lable04 ADD R4,R4,R4
0000101111111100 BRnp Lable02
1111000000100101 HALT
0100000000000000 Lable07 .FILL x4000

 .END

ECE 109 602-605 3 of 7 Exam 2

Problem 4 (15 points)
Assume that the eight LC/3 registers have the values shown on the left below and that the eight
words of memory starting at memory location x3020 have the values shown on the right.

Register Value Address Value
R0 x0000 x3020 x0000
R1 x0001 x3021 x0001
R2 x0002 x3022 x0002
R3 x0003 x3023 x0003
R4 x0004 x3024 x0004
R5 x0005 x3025 x0005
R6 x4444 x3026 x6666
R7 x5555 x3027 x7777

For six of the following seven unanswered cases shown below, write either a single LC/3
instruction or a series of two LC/3 instructions to load the value stored in the specified memory
location into register 5. Assume that each instruction is located at memory address x3010.

Only three of the seven require the use of two instructions. Because I'm only grading six of the
seven, you can miss one without penalty. In the difficult cases, you'll do well to give an
explanation of your strategy.

Rubric and common problems:
The point of this question was to test facility with LD, LDI, and LDR
and knowledge of the restrictions imposed by the size of instruction bit
fields. The question really should have prohibited .FILL's, since they
make it a bit too easy. (Also, that x3111 was supposed to be x3101.)
2.5 points, with liberal partial credit, were given to each correct answer
for the best six of seven answers.
x3021 LD R5,x10

x3111 LEA R5,xF0
 LDR R5,R5,x10

x4424 LDR R5,R6,#-32
x4444 LDR R5,R6,#0
x4464 ADD R5,R6,x10

 LDR R5,R5,x10
x6666 LDI R5,x15
x6667 LD R5,x15

 LDR R5,R5,#1
x8888 ADD R5,R4,R4

 LDR R5,R5,#0

ECE 109 602-605 4 of 7 Exam 2

Problem 5 (40 points)
In this long question of many parts, write little (many only two or three instructions long) LC/3
programs to solve the following small problems. Answers that are unnecessary long or
complicated will not receive full credit.

3 points
Some people forgot set R3 to 0 before adding in five
Write LC/3 code to set R3 to 5.
 AND R3,R3,#0
 ADD R3,R3,#5
3 points
0.5 point deducted for unnecessary load from memory (.FILL)
Write LC/3 code to turn “off” bits 3 to 0 of register R2. For example, if R2 contains
x8ADE, it should be set to x8AD0. In other words, “and” R2 with xFFF0.
 AND R2,R2,xFFF0
5 points
Many people needlessly changed R3
Write LC/3 code to set R5 from R3, according to the following formula:
 R5 = 3*R3 + 1
 ADD R5,R3,R3
 ADD R5,R5,R3
 ADD R5,R5,#1
5 points
Write LC/3 code to subtract R3 from R4. The result should be stored in R5. This is like
computing the following equation:
 R5 = R4-R3
 NOT R5,R3
 ADD R5,R5,#1
 ADD R5,R5,R4
8 points
The solution below is certainly not the obvious one. The typical solution was

ADD R4,R4,#0
BRn VNEG
ADD R5,R4,#0
BR DONE

VNEG AND R5,R5,#0
DONE
gradeing – 2 points for each BR, 1.0 points for test of R4, and 1.5 points for each update of R5
Write LC/3 code to compare R4 to zero and to (1) set R5 to R4, if R4 is positive, or (2)
set R5 to 0, if R4 is negative. (This is similar to the IRS directive: “Enter line 4 in line
5, if line 4 is a positive number. Otherwise, enter 0”.)
 ADD R5,R4,#0
 BRzp R5pos ; skip next if R4<0
 AND R5,R5,#0
R5pos

ECE 109 602-605 5 of 7 Exam 2

8 points
Write LC/3 code to test if R5 contains the ASCII character for 'n' or for 'c'. If so,
set R3 to contain the value 1. Otherwise, set R3 to contain 0.
 LD R3,NEGn
 BRz FndChr
 LD R3,NEGc
 BRz FndChr
;; No match – Set R3 to 0
 AND R3,R3,#0
 BR Done
;; Found a match – Set R3 to 1 (it's already 0)
FndChr ADD R3,R3,#1
Done
NEGn .FILL #-110 ; ASCII for 'n' is 110
NEGc .FILL #-99 ; ASCII for 'c' is 99

8 points
(A) If R4 is greater than 0, keep doubling R4 until it is bigger than 100. If R4 is not
greater than 0, don't change it.

or
(B) Add up the numbers stored in the 256 memory locations from x4000 to x40FF and
store them in R2.

Answer either (A) or (B).
;; (A)
 ADD R4,R4,#0
 BRnp Done ; Don't change is R4<=0
LOOP LD R5,NEG100
 ADD R4,R4,R4 ; Double R4
 ADD R5,R5,R4 ; Test if R4>100
 BRnp LOOP
Done

NEG100 .FILL #-100
;; (B)
 LD R5,K256 ;; R5 is the countdown
 LD R4,Kx4000 ;; R4 is the pointer
 AND R2,R2,#0 ;; R2 is the sum
LOOP LDR R3,R2,#0 ;; R3 gets next number
 ADD R2,R2,R3 ;; Add R3 into the sum
 ADD R4,R4,#1 ;; increment pointer
 ADD R5,R5,#-1 ;; decrement counter

ECE 109 602-605 6 of 7 Exam 2

 BRp LOOP ;; do it 255 times

K255 .FILL #256
Kx4000 .FILL x4000

ECE 109 602-605 7 of 7 Exam 2

