A Mixed Constraint Problem

 $Z_{max} = \$400X_1 + \$200X_2$ Subject to: $X_1 + X_2 = 30$ (contracted items) $2X_1 + 8X_2 \ge 80$ (square yds of leather) $X_1 \le 20$ (briefcases)

Transform the inequalities into equations:

An "equal to" constraint $X_1 + X_2 = 30$ 0 + 0 = 30So: $X_1 + X_2 + A_1 = 30$ We assign A_1 a value of -M .. why?

 $\frac{\text{A "greater than" constraint}}{2X_1 + 8X_2} \ge 80$ $2X_1 + 8X_2 - S_1 + A_2 = 80$

 $\frac{A "less than" constraint}{X_1 <= 20}$ $X_1 + S_2 = 20$

<u>The transformed objective function</u> $Z_{max} = 400X_1 + 200X_2 + 0S_1 + 0S_2 - MA_1 - MA_2$

Initial Simplex Tableau									
	Basic	Basic		400	200	0	0	- M	-M
	<i>с</i> _ј	Variables	Quantity	<i>x</i> ₁	x2	s ₁	\$ ₂	A,	A ₂
	- <u>M</u>	A_1	30	1	1	0	0	1	0
	-M	Α,	80	2	8	-1	0	0	· 1
	0	s ₂	20	1	0	0	1	0	0
		z,	-110M	-3M	-9M	М	0	M	-M
		$c_j = z_j$		400 + 3M	200 + 9M	-M	0	0	0