
Object-oriented patterns.
by Peter Coad

Object-oriented analysis (OOA) and object-oriented design (OOD) rely on classes and objects as
the lowest level building blocks. These classes and objects form patterns with specific
relationships between them. Groups of classes in an object-oriented environment are likely to be
useful repeatedly. Many patterns may be found by trial-and-error and by observation. Examples of
pattern types include item description, time association, event logging, roles played, state across
a collection, and broadcast. Patterns standardize small piecework into a larger unit and become
building blocks for program design and construction.

© COPYRIGHT Association for Computing Machinery
Inc. 1992

This article explores patterns, how to find them, presents
some patterns for object-oriented analysis (OOA) and
object-oriented design (OOD) as well as providing
examples and guidelines for applying them.

Patterns Apply to Many Disciplines

What is a pattern?

Pattern. A fully realized form, original, or model accepted
or proposed for imitation: something regarded as a
normative example to be copied; archetype; exemplar
(10).

Many fields use patterns in various ways: In music and
literature, a pattern is the coherent structure or design of a
song or book. In art, a pattern is the composition or plan of
a work of graphic or plastic art. In architecture, a pattern is
an architectural design or style.

In psychology, a pattern is a thinking mechanism that is
basic to the brain’s operation, helping one to perceive
things quickly (1). In archeology, a pattern is a group of
phases having several distinguishing and fundamental
features in common. In linguistics, a pattern is the manner
in which smaller units of language are grouped into larger
units.

In dressmaking, a pattern is a pleasing shape that is
applied repeatedly. In decorating, a pattern is a design or
figure appearing in furniture or an accessory. In
manufacturing, a pattern is the shape or style of a
manufactured form. In aviation, a pattern is a collection of
approaches, turns, and altitudes prescribed for an airplane
that is coming in for a landing. In broadcasting, a pattern is
a standard diagram for testing television circuits.

In numismatics, a pattern is a specimen of a proposed coin
or coin design. In chess, a pattern is a set of moves that
may be applied in an overall strategy (10).

With each pattern, small piecework is standardized into a

larger chunk or unit. Patterns become the building blocks
for design and construction. Finding and applying patterns
indicates progress in a field of human endeavor.

How do People Discover Patterns?

In his book The Timeless Way of Building (2), noted
architect Christopher Alexander examines the importance
of architectural patterns:

...every place is given its character

 by certain patterns of events that

 keep on happening there.... These

 patterns of events are locked in

 with certain geometric patterns in

 the space. Indeed, each building

 and each town is ultimately made

 out of these patterns in the space,

 and out of nothing else; they [pat

- terns in the space] are the atoms

 and molecules from which a build

- ing or a town is made (2).

Patterns are more than just the smallest elements in an
endeavor.

On the geometric level, we see certain physical elements
repeated endlessly, combined in an almost endless variety
of combinations It is puzzling to realize that the
elements, which seem like elementary building blocks,
keep varying, and are different every time that they occur
.... If the elements are different every time that they occur,
evidently then, it cannot be the elements themselves which
are repeating in a building or town; these so-called

Communications of the ACM Sept 1992 v35 n9 p152(8) Page 1

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Object-oriented patterns.
elements cannot be the ultimate "atomic" constituents of
space (2).

To find patterns, what does one look for?

Look more carefully...to find out what it really is that is
repeating there.... Beyond its elements, each building [or
town] is defined by certain patterns of relationships among
the elements.... These relationships are not extra, but
necessary to the elements The elements themselves
are patterns of relationships (2).

And what happens when one finds a pattern? One begins
to think with that new building block, rather than with littler
pieces.

And finally, the things which seem like elements dissolve,
and leave a fabric of relationships behind, which is the
stuff that actually repeats itself, and gives the structure to a
building or a town (2).

How Can One FInd Patterns for OOA and OOD?

So what is the impact of Alexander’s insights on advancing
OOA and OOD? Object-oriented methods tend to focus on
the lowest-level building block: the class and its objects (3,
4, 5, 9, 11).

Object. A person, place, thing, event, or concept.

Class. A description of a number of objects which have
certain likenesses or common traits. (derived from (10))

Classes and objects correspond to Alexander’s constantly
repeating, lowest-level elements. Patterns of lowest-level
elements and relationships between them form a building
block for more effective OOA and OOD. To find a pattern
among some lowest-level elements (classes and objects),
one must look at the relationships between them.

Object-oriented methods already emphasize certain
patterns of relationships, including
generalization-specialization, whole-part, association, and
messaging (3, 4, 9). Such relationships tie the lowest-level
building blocks together.

Some have investigated application frameworks (7), a
skeleton of classes, objects, and relationships grouped
together for building a specific application. Most of these
application frameworks are primarily human interaction
skeletons, providing a more systematic approach to
building window interfaces. Examples include Apple’s
MacApp (for building a Mac interface), Borland’s
ObjectWindows, and the model-view-controller
architecture within ParcPlace System’s Objectworks (6, 8).

But other combinations--ones likely to be applicable
multiple times within a single application, and likely to be
applicable across many different kinds of
applications-have not been investigated to date. Little is
known about patterns-combinations of certain classes
and objects, with relationships between them--that apply
again and again in different OOA and OOD efforts.
Exploring such patterns is the purpose of this short article.

An object-oriented pattern is an abstraction of a doublet,
triplet, or other small grouping of classes that is likely to be
helpful again and again in object-oriented development.

Patterns are found by trial-and-error and by observation.
By building many object-oriented models and by observing
many applications of the lowest-level building blocks and
the relationships established between them, one can find
patterns. With such patterns, as Alexander observed, "the
things which seem like elements dissolve," and one is able
to use a higher-level building block for OOA and OOD.

Seven Patterns, Seven Examples, and Guidelines

This section begins with notation, followed by a
presentation of the following patterns: item description;
time association; event logging; roles played; state across
a collection; behavior across a collection; and broadcast.
With each pattern discussed, examples and guidelines
are provided. Notation This article uses the notation
summarized in Figure 1.

"Item Description" Pattern Figure 2 illustrates the "item
description’’ pattern.

The pattern. The item description pattern consists of an
"item" object (i.e., an object of the class "item") and an
"item description" object. An "item description" object has
attribute values which may apply to more than one "item"
object; an "item" object has its own individual assignment
of attribute values.

An example. An "aircraft" object knows its own tail number
(e.g., N123ABC); it also knows about exactly one "aircraft
description" object. An "aircraft description" object knows
its own manufacturer (e.g., Boeing), model (e.g., 747-400),
and standard cruising range (e.g., 8,333 miles); it also may
know about some number of "aircraft" objects that depend
on that information.

Guidelines for use. Use this pattern when some attribute
values may apply to more than one object in a class.

"Time Association" Pattern Figure 3 illustrates the "time
association" pattern.

Communications of the ACM Sept 1992 v35 n9 p152(8) Page 2

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Object-oriented patterns.
The pattern. A "participant 1" object may know about (be
associated with) a "participant 2" object. If one needs to
express attributes or services regarding that association,
then an object from "time association" is needed. A "time
association" object often sends messages to its
participating objects in order to get values or get a
subcalculation done on its behalf. Note that the association
connection (I) captures the association for future. queries
about these objects and (2) captures (for the sender)"to
whom to send a message."

An example. A "legal event" object knows its date and
time; it also knows about (and ties together, in association)
 some number of "owner" objects and exactly one
"vehicle" object. To calculate a fee, a "legal event" object
sends the message "assess tax type" to its corresponding
owner object(s) and then sends the message "categorize
vehicle" to its corresponding vehicle object. An "owner"
object knows its name and address; it also knows about
some number of corresponding "legal event" objects. A
"vehicle" object knows its number and style; it also knows
about some number of corresponding "legal event"
objects.

Guidelines for use. Use this pattern whenever the system
is responsible to know an association between two or
more objects and to know or do something about that
association.

"Event Logging" Pattern Figure 4 illustrates the "event
logging" pattern.

The pattern. A "device" object monitors an external device;
the object is responsible for detecting that an event has
occurred; the object is also responsible for initiating the
response to that event. Part of that response may be to log
the event’s occurrence. When this is the case, a "device"
object sends the message "create" to the "event
remembered’’ class to create a new object in that class,
one with historical values. A "device" object may know
about some number of "event remembered" objects; an
"event remembered" object must know about a
corresponding "device object.

An example. A temperature sensor" object monitors an
actual temperature sensor looking for a threshold violation,
to do its job, it knows its operational state and its
threshold. Once it detects that a threshold violation has
occurred, it sends a message to the "threshold violation"
class to create a new object in that class with values for
date and time, measured value, and monitored threshold.

Guidelines for use. Use whenever an event is detected,
and you need to log its occurrence to support after-the-fact
analysis or to meet legal requirements.

"Roles Played" Pattern Figure 5 illustrates the "roles
played" pattern.

The pattern. A "player" object has attribute values and
services that apply over time. A player object is always a
player object. At times, a player object "wears different
hats," playing one or more roles. Often, starting and
ending times are common to all such roles. Roles are
specialized, according to the attributes and services
needed in each role. This pattern accommodates large
numbers of roles, combinations of roles, and changes in
roles much more graciously than an application of multiple
inheritance permits.

An example. A "video" object knows its name and copy
number; it also knows about corresponding "rented video
role" and "returned video role" objects. Each role object
knows its starting date and time and (eventually) its ending
date and time. The "rented video role" knows its
duration, and watches for it becoming overdue; the
"returned video role" knows its status (i.e., whether or not it
is ready to be rented again).

Guidelines for use. Use this pattern whenever you have a
player object which remains the same old player object,
but has different attributes and services, depending on the
"hats" the player may wear. Use this pattern to model large
numbers of roles, combinations of roles, and changes in
roles; this approach is more concise and flexible than
attempting to use multiple inheritance in this situation.

"State Across a Collection" Pattern

Figure 6 illustrates the "state across a collection" pattern.

The pattern. A "collection" object knows its state; this state
applies to the collection and may also apply to its parts, by
physical or temporal proximity. And each "member" object
has its own state, too.

An example. An aircraft is an assembly (collection) of
engines; in other words, an "aircraft" object may know
about some number of "engine" objects. (Note that while
most aircraft have engines, gliders do not.) Each
"engine" object knows its own rated power. Each "aircraft"
object knows about its altitude; this particular attribute
value applies to the whole, and also to its parts, by
physical proximity.

Guidelines for use. Use this pattern whenever there is
whole-part in a business domain or implementation
domain, and one or more attributes apply to the whole (the
collection).

"Behavior Across a Collection" Pattern

Communications of the ACM Sept 1992 v35 n9 p152(8) Page 3

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Object-oriented patterns.
Figure 7 illustrates the "behavior across a collection"
pattern.

The pattern. A "collection" object has behavior that applies
across an entire collection of its "member" objects. And
each "member" object performs actions, knowing (by
means of its attributes) how to perform, without needed
coordination with other "member" objects.

An example. A "call" object knows its time of arrival,
priority, and its originating number. The "call" object (the
abstraction, not the electronic signal it works on) also
knows how to route itself. It can even rate its importance.

But which call gets to go next? The "call" object does not
know enough to make the actual selection. Yet a collection
of all calls, called a "call collection" object in this example,
can know enough (all the call objects waiting to be
serviced) and do enough (select the next call, based on a
selection algorithm) to carry out this responsibility. So the
"call collection" object is set up to do just that. Note that
such a collection does exist in the domain; it is called a
queue; but the words "call collection". take the model away
from being locked into a "first in, first out" mentality; and
the name helps one to focus on behavior across the
collection only, not pulling up any of the work that each call
knows enough to do itself.

Guidelines for use. Use this pattern whenever there is
whole-part in a business domain or implementation
domain, and a behavior (i.e., one or more services) applies
across the whole collection. Caution: make the member
objects do as much as they can with what they knoW; only
put behavior that really applies across the collection up in
the "collection" object; in doing this, the active side of the
objects is better partitioned by the participating classes,
rather than having a centralized manager with subordinate
data-hiders.

"Broadcast" Pattern

Figure 8 illustrates the "broadcast" pattern.

The pattern. This pattern is used to communicate complex
changes between one major section of an OOA/OOD
model with another major section. Whenever it changes,
a "broadcasting item" object broadcasts a change
notification to the "receiving item" objects that it knows
about. A notified "receiving item" object then sends a
message to the "broadcasting item" to get the change;
once it gets the change, a "receiving item" object takes
whatever action is necessary in light of the change.

An example. On the left side of Figure 8, the pattern is
applied to keep human interaction distinct from business

domain classes. This is done to simplify both parts; and it
is done to increase the likelihood of reuse for each part. A
"human interaction view" object gets user input and sends
a message to invoke action to the corresponding "model"
object. At some point in time, when a change does occur,
a "model" object broadcasts a change notification to its
dependent "human interaction view" objects. Then each
dependent "human interaction view" object sends a
message to get the change; on receipt of the change, the
"human interaction view" updates its display. In
ParcPlace System’s Objectworks, this application of a
broadcast pattern is called model-view-controller (MVC);
the innovative work on MVC (6, 8) is the basis for
abstracting and then applying the "broadcast" pattern.

On the right side of Figure 8, the pattern is used to isolate
the impact of data management. Again, this is done to
simplify both parts; and it is done to increase the likelihood
of reuse for each part. At some point in time, when a
change does occur, a "model" object broadcasts a
change notification to its dependent "data interaction view"
objects. Then each dependent "data interaction view"
object sends a message to get the change; on receipt of
the change, the "data interaction view" updates its data
representation (e.g., its tables). The "data interaction view"
knows how to save and load its data representations into a
storage device.

Actually, this example is somewhat simplified; often, in the
application of this pattern, the interacting objects are
actually objects of classes that are specializations of the
classes shown in this example. Yet the same basic pattern
applies, even when specialization classes are involved.

Guidelines for use. Use this pattern to establish
interactions between major OOA/OOD parts in a way that
the two sections stay cleanly separated, rather than
becoming hopelessly intertwined. Be sure to use this
pattern to separate business domain classes from human
interaction classes, and to separate business domain
classes from data management classes.

Applying SIx Patterns In One Example

Figure 9 is a larger example showing how patterns can be
combined into larger models. This one model applies six
patterns. summary and

Recommendations

A pattern is a fully realized form original, or model
accepted or proposed for imitation. With patterns, small
piecework is standardized into a larger chunk or unit.
Patterns become the building blocks for design and
construction. Finding and applying patterns indicates

Communications of the ACM Sept 1992 v35 n9 p152(8) Page 4

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Object-oriented patterns.
progress in a field of human endeavor.

This article is only a very small beginning of the work to be
done on investigating, finding, and applying
object-oriented patterns. Additional investigation is
needed on pattern discovery and usage. Given a large
number of OOA and OOD results, can one apply a
systematic approach to discovering and cataloging
patterns? Is there a hierarchy of patterns? How does one
look at examples and derive guidelines for best usage?
What strategies can be used for connecting one pattern to
another? When does the occurrence of one pattern imply
the need for another companion pattern?

Patterns are the molecules from which one may apply
OOA and OOD more effectively.

Acknowledgments The author thanks Mark Mayfield, Jill
Nicola, and Teri Roberts for their help in identifying,
abstracting, and applying these patterns. If

References

1. Albrecht, K. Brain Power. Prentice Hall, Englewood
Cliffs, N.J., 1980.

2. Alexander, C. The Timeless Way of Building. Oxford
University Press, 1979.

3. Booch, G. Object-Oriented Design with Applications.
Benjamin/Cummings, Redwood City, Ca., 1991.

4. Coad, P. and Yourdon, E. Object-Oriented Analysis.
Second ed. Prentice Hall, Englewood Cliffs, N.J., 1991.

5. Coad, P. and Yourdon, E. Object-Oriented Design,
Prentice Hall, Englewood Cliffs, N.J., 1991.

6. Goldberg, A. Information models, views, and controllers.
Dr. Dobb’s J. (July 1990).

7. Johnson, R. and Wirfs-Brock, R. Object-oriented
frameworks, Tutorial notes. In Proceedings of ACM
OOPSLA (1991),

8. Leibs, D. and Rubin, K. Reimplementing
model-view-controller. The Smalltalk Report (Mar./Apr.
1992).

9. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W. Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cliffs, N.J., 1991.

10. Webster’s Third New International Dictionary. Merriam
 Webster, Inc., 1986.

11. Wirfs-Brock, R., Wilkerson, B. and Wiener, L.
Designing Object-Oriented Software, Prentice Hall,
Englewood Cliffs, N.J., 1990.

CR Categories and Subject Descriptors: D.2.1 [Software]:
Software Engineering -- requirements / specifications; D.
2.10 [Software]: Software Engineering-design; I.6.0
[Computing Methodologies]: Simulation and
Modeling-general; I.6.3 [Computing Methodologies]:
Simulation and Modeling-- applications; K.6.3 [Computing
 Milieux]: Management of Computing and Information
Systems--software management; K.6.4 [Computing
Milieux]:Management of Computing and Information
Systems--system management

General Terms: Design, Experimentation

Additional Key Words and Phrases: Analysis, design,
object-oriented notation and methodology, object-oriented
software engineering, reliable component reusability

About the Author:

PETER COAD is the chair of Object International, Inc.
Current research interests include object-oriented
methods, reuse, more effective analysis and design tools,
and intelligence theories leading to accelerated technology
transfer. Author’s Present Address: Object International,
Inc., 8140 N. MoPac Expressway, Building 4, Suite 200,
Austin, TX 78759-8864; email: coad@ applelink.apple.com
 or CompuServe 71210, 3642

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission
of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific
permission.

[C] 92/0900-153 $1.50

Communications of the ACM Sept 1992 v35 n9 p152(8) Page 5

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

