Patterns for Experiential Learning

Submission to the PPP pattern language
project on experiential learning

Edited by Markus Völter (voelter@acm.org) and Klaus Marquardt (marquardt@acm.org)

© the respective pattern authors

Version 0.3, 2. Feb. 2001
Roadmap

This pattern language under construction contains patterns from the PPP effort which were refactored. …

The following patterns are currently available in a refactored form:

· Experiencing in the Tiny, Small and Large

· Understanding Abstraction

· Solution Before Abstraction

· One Concept, Several Implementations

· See Before Hear

· Expose the Process

· Round Robin

· Student Design Sprint

Experiencing in the Tiny, Small and Large

This pattern is a refactoring of Billy B.L. Lim’s Programming in the Tiny, Small, Large [BL] pattern, refactored by Jutta Eckstein.

A complex concept is difficult to understand unless you have experienced it yourself. However concepts are often so complex that experiencing the whole in one step doesn't help either.

(((
Therefore, introduce the concept in three stages, tiny, small and large, which allow you to monitor the students' progress on a topic-by-topic basis (tiny), to test if the student can combine the topics and apply them in a larger setting (small) and to solve a real-world problem using all parts of the concept, thus seeing the big picture respectively (large).

Provide a smooth way for the students to get a start into the topic. This is best done by General Concepts First [VF]. Make sure that each of the stages doesn't force the students to make a large jump (as in Digestible Package [VF]). And finally don't forget to give immediate Feedback [VF] to the students' experiences. You might want to consider to introducing the concepts by letting the students experiencing them first (as in See Before Hear [MLM]). For emphasizing more the iterative part of the pattern, you can use Spiral [JB] as the context.

As a consequence, students can grasp abstract concepts early in the course through tiny assignments before they embark on a more challenging one. Having worked on the individual pieces and having combined those pieces together give them the possibility to see the big picture without loosing track of the details.

(((
For example, when teaching the basics of object-oriented design concepts assign to the students one tiny concept (class) to think about. The next step would be to let them develop a small design, consisting of e.g. three classes. The final large assignment would then be to design a whole system. The time frames for the different stages depend on the whole course length. When you are teaching a one week course in industry, the tiny assignment may take only a few minutes, the small assignment less than an hour whereas the large assignment will run throughout the whole week.

Understanding Abstraction *

This pattern is a refactoring of Gary L. Craig’s Discussion-Activity-Review-Lab-Review [GLC] pattern, refactored by Jane Chandler.

Concepts that must be understood at two levels of abstraction require time for an iterative approach to learning, however this can be time consuming.

(((
Therefore, introduce a concept at its highest level of abstraction and use concrete, practical examples together with reflection on the concept to link the higher level abstraction to the lower level abstraction.

Begin with a class-wide discussion of the concept and its place in the software development life-cycle. Follow this with small group exercises based around specific (detailed) issues. Next, review the results of the exercises with the whole class paying particular attention both to alternative and to common solutions. A further set of exercises is then used to enable the students to produce the lower level of abstraction. Where appropriate (for example when moving between analysis/design and design/implementation steps) the lower level abstraction should be illustrated in part through a transformation. Finally evaluate the results of the second set of exercises and review the connections between the abstraction levels.

When designing the exercises relate the abstract concept to students’ concrete experiences (see Solution before Abstraction) and ensure that students see a number of examples of the concept (as in One Concept – Several Implementations).

Careful consideration should be given to which of the concept’s levels of abstraction should be emphasized, e.g., the higher or lower level or the transformation process between the levels of abstraction, as this will drive the level of detail required in each activity.

A consequence of this pattern is that students appreciate the links between concept’s different levels of abstraction.

(((
For example, use in an analysis and design course by firstly introducing the analysis problem, then requesting students to develop the analysis model; after which discuss the impact of the analysis on the design; follow with practical work on the design and finish with a review of the resultant design model including reflection back to the analysis model.

Alternatively use in design and coding courses to show the relationship between the two phases and provide a context for the decisions made. The design issues can be introduced in the initial, class-wide discussion and followed by the students undertaking a design exercise. Students then have a sense of "ownership" of the problem and subsequent design and from this position they are then asked to undertake the implementation of the design and finally evaluate their code in relation to their design.

This pattern has been used by Gary Craig [GLC] in teaching "synchronization" mechanisms in Java.

Solution before Abstraction

This pattern is a refactoring of Ian Chai’s Concrete to Abstraction [IC] pattern, refactored by Klaus Marquardt.

An abstract concept can become the basis for a large number of applications. However, it is hardly considered useful unless it is related to concrete experience.

(((
Therefore, give the students an example of the problem in a setting that they are comfortable with. Having found the solution for the example, focus on the aspects that can be applied to similar problems. Depending on the experience of the students as well as on the complexity of the subject matter you should introduce more than one concrete example (see One Concept – Several Implementations). Use the identified aspects to introduce the general concept of the solution. Having understood the underlying principle, you can advance to a more formal description such as abstractions or patterns
This kind of presentation is especially useful for students with little or no experience in the course area. It assumes that students are unfamiliar with the concept with respect to their profession, so that they need to learn a relation that more experienced professionals probably do not need. After some abstractions are introduced this way, the teacher may change the presentation form and start with abstractions before applying it to example situations.

(((
For example, real life experiences can be used to introduce abstract concepts. The role of a translator in real life, and then between software systems, helps to introduce the concept of the Adaptor pattern that allows to establish contact with a different person or program without the need to change it.

One Concept – Several Implementations

This pattern is a refactoring of Marcelo Jenkins’ Design-Do-Redo-Redo [MJ] pattern, refactored by Markus Voelter.

An abstract concept is hard to understand without a concrete implementation. However, teaching a concept using a concrete implementation blurs the concept itself.

(((
Therefore, use several different implementations of the concept as examples while teaching the abstract concept. Compare the different implementations afterwards, to re-discover the essence, the abstract concept. You can use this pattern in the form of examples, exercises, group work, etc.

As a consequence, the students learn the abstract concept and see several concrete implementations. It is an advantage if the students are already familiar with one of the concrete realizations. If the pattern is used in the form of exercises or group work, immediate feedback is critical, to make sure the students don’t implement the concept wrong several times.

(((
For example, it is hard to teach object-oriented programming concepts without binding them to a specific programming language. To overcome this problem, let the participants implement a small problem in several languages, and afterwards, let them compare the solutions using a table with several comparison criteria, such as encapsulation, polymorphism, inheritance, memory management, syntax, etc.

See Before Hear

This pattern is a refactoring of N.N.’s See Before Hear Pattern [], refactored by Mary Lynn Manns.

Learners often find it difficult to convert what they've heard in the classroom into skills they can use outside the classroom. They will remember less of what they hear than what they see and experience. However, in the typical and quite practical classroom lecture format, instructors are often heard saying such things such a “<this> is what will happen when you do <this>”. But, a “hear before see” approach is quite abstract, and can make it difficult for the learner to later make use of the concepts in the lecture.

(((
Therefore, give learners the opportunity to see and experience a new concept before they hear about it. Encourage learners to record, and to reflect upon, what happened when they are involved in the learning.

(((
For example:

See: Give learners the resources to complete a hands-on lab exercise with detailed step-by-step instructions and references to documentation where clarification may be obtained. Include questions throughout to encourage learners to record and analyze their experiences. Periodically allow time for a learner-centered discussion of unfamiliar concepts and problems encountered along the way.

Hear: Following the “see” experience, a more traditional “hear” lecture can be delivered to solidify the new concepts that were introduced during the lab. References should be made to the experiences the learners just had during the "see" phase.

Learners become actively involved in their learning because they are introduced to new concepts as they are using them. Instructors can give less abstract lectures since learners will have had experience with the concepts before a lecture session.

Because of the effort required to develop the hands-on lab for the “see” experience, the prep time can initially be tedious for the instructor. However, the increased level of student comprehension that this approach provides seems to decrease the necessity for extensive follow-up and review periods.

An optional follow-up exercise can be given in the form of a more complex lab that reinforces and tests each learner's understanding of the new concepts. It can then be evaluated by the instructor.

Mistake Pattern [Bergin] and Toy Box [Bergin] are See Before Hear patterns.

Expose the Process

This pattern is a refactoring of Byron Weber-Becker’s Expose The Process Pattern [BWB], refactored by Markus Voelter.

Examples and exercises form a vital part of any teaching effort. However, often examples and (correct solutions too) exercises only show the final result. The process of getting there, including the necessary deciscions, dead-ends and backtrackings, alternatives and principles is not obvious. As a result, students get frustrated because they do not find an equal solution, or simply do not know how to approach the problem.

(((
Therefore, when showing examples or “ideal” solutions to exercises, also show and explain the process of getting there. Show the critical decision points to the students and allow them to make their own proposals on how to go on. When asking them to do an exercise, ask them to also document alternative solutions, and why they do not lead to the desired result. When discussing the exercise in class, let the students show and discuss alternative solutions.

Be sure to honor “silly questions” (as in Joe Bergin’s Gold Stars for Confusion [JB3]) and honor the students work on a topic, even if the correct solution one was not found (as proposed in Exercise Emphasize Process by Fricke/Voelter in [VF]).

This pattern takes time. You have to reduce the amount of what you cover in a session, however, the things still covered will be more thoroughly understood.

Do not use the pattern when introducing a new topic. It is not very productive to let the students struggle to find a solution without suitable tools – and then showing an elegant solution using a new technique. The pattern works best during a consolidation phase, when students are practicing formerly introduced topics and learning how best to apply them.

(((
There are several ways to implement this pattern. One is to go into a lecture/seminar with a problem, but without a solution, trying to find the solution together with the participants. This is a bit risky, in case you do not find the solution... Alternatively, you can try to find the solution offline before, and write down all decision points, etc.

You should try to involve students. But be careful: If the good students always suggest the “ideal” solution first, you have to suggest worse solutions to get the variety. This is not ideal, therefore start by showing weaker solution first, then asking the students for improvements.

The pattern has been used in the introductory programming course at the University of Waterloo (Waterloo, Ontario, Canada), and in the books An Introduction to Computer Science using Java by Kamin et. al. [KMR] and Designing Pascal Solutions: A Case Study Approach by Clancy et al. [CLF].

Round Robin

This pattern is a refactoring of Kent Beck and David Bellin's Round Robin [BB] pattern, refactored by Joseph Bergin.

One of the most difficult aspects of team work is getting everyone in the room to work on equal footing. Both organizational differences (jobs, position, etc.) and personality can quickly and inadvertently lead to a core of speakers and a core of listeners. Moreover, the fact that the listeners are not talking does not mean they are not thinking or that they are in agreement. However, you want to get everyone's participation and input and you especially want to encourage the quieter members to take a more active role.

(((
Therefore, use a round robin technique to solicit suggestions.

Go around the room or table. As each member of the team contributes an idea, write it down on the board. The facilitator should do the writing since the other members of the team should be watching and thinking. If there is a team member who does not have enough information on a particular problem to contribute to the brainstorming, that person can act as scribe to keep them involved. However, if a team is chosen well, every member should be an important source of ideas. The goal of the round robin is to allow the group to move ahead at an even tempo but to give people enough time to think. Short pauses are fine, but breaks of more than 60 seconds can interrupt the momentum and ideas may be lost. To keep things going you can establish a "pass" policy. If someone is really stumped, they can "pass" for that round, but they should take their regular turn the next time around. The facilitator needs to be sensitive here. If someone is slower to speak, don't cut off their turn too soon. At the same time, keep things moving so that other people do not forget what they want to say. The brainstorming is complete when everyone in the group has to pass.

However, this works better in small groups (6 or so) than large (20). You may need to factor out a subset of the group to use this effectively. Or you can partition the large group into smaller groups and use this in each group. To do that requires a facilitator in each group.

(((
For example, you can use this in coming up with suggestions for the initial CRC cards for a class design of a new problem being considered by the class. You can also use it to get comments on the flaws in a suggested design. You can also use this in any Brainstorming [DB] session.

Student Design Sprint

This pattern is a refactoring of Joseph Bergin's Student Design Sprint [JB2], refactored by Joseph Bergin.

Students need to practice design at all levels. They also need quick feedback and peer review on early attempts. Most educators recognize now that students need to be exposed to design early. Most also recognize the need for team work and for critical analysis. We eventually need to teach system design, but beginners need program design as well. If we don't teach it then students will develop their own ad-hoc techniques that may reinforce bad habits. If you use a Spiral [JB] approach the elements of simple design should come in the first cycle.

(((
Therefore, use some variation of the following highly structured activity. This activity can take place in a seminar, classroom, or in a lab.

Divide the students into groups of two (or three). Give them a design problem and ask the teams to produce a design outline in 15-20 minutes. There should be a written sketch of the design in that time, perhaps with CRC cards if it is an object design. The instructor can look over shoulders and comment or not, but few hints should be given. Questions should be answered freely.

At the end of 15-20 minutes, the instructor poses a set of questions about the designs without asking for answers. The questions should be such that they cannot be favorably answered by some set of poor designs.

The students are then regrouped by combining pairs of nearby groups, so that you now have groups of 4 or five students and each group has two of the original designs. The task is now modified slightly and the groups are asked to produce a new design.

After another 15-20 minutes the instructor again poses a set of questions for thought, regroups the students again into still larger groups, modifies the task slightly and again puts the students to work.

This can continue for as many cycles as the instructor wishes. At the end, the instructor should evaluate the resulting designs and make comments. It may be enough to show one or two of the best designs and explain why these are better than the others. If poor designs are also to be shown, it might be best if the names of the designers are not attached.

Alternatively, the groups can be required to present and justify their designs and the rest of the class can critique them.

For some situations one cycle may be all that is needed, followed by a discussion of the issues. In this case the instructor can ask the groups which designs had certain characteristics.

(((
Alistair Cockburn [AC] has a wonderful exercise for students designing a coffee machine in about three or four cycles in which the requirements become more sophisticated each cycle. In the first cycle the machine can deliver coffee for 35 cents. In the second it can also deliver soup for 25 cents.

This can be used in program design in the early phases of a student's learning. The task can be to write a function with a given set of pre and post conditions. The tasks in the later cycles can be to tighten the pre conditions and/or strengthen the post conditions.

Alternatively, the task could be to develop some code with a given invariant and the questions can involve ways that the invariant might be invalidated by a user if the design is not sound.

This pattern can be used when learning data structure design. For example, the students can be asked to design a linked list, without telling them how it will be used. They must design a protocol and pick an implementation strategy. The instructor can then suggest some uses to which a linked list might be put and ask if the design supports that use.

References

	AC
	Alistair Cockburn, Website, http://members.aol.com/acockburn/

	BB
	Kent Beck and David Bellin, Round Robin,
 http://www-lifia.info.unlp.edu.ar/ppp/pp6.htm

	BL
	Billy B.L.Lim, Programming in the Tiny, Small, Large, http://sol.info.unlp.edu.ar/ppp/pp10.htm

	BWB
	Byron Weber-Becker, Expose the Process, http://www.soi.city.ac.uk/~hsharp/OopslaPATS.htm

	CLF
	Clancy, Linn, Freeman, Designing Pascal Solutions: A Case Sudy Approach, 1992

	DB
	David Bellin, Brainstorming,
 http://www-lifia.info.unlp.edu.ar/ppp/pp4.htm

	GLC
	Gary L. Craig, Discussion-Activity-Review-Lab-Review, http://sol.info.unlp.edu.ar/ppp/pp18.htm

	IC
	Ian Chai, Concrete to Abstraction, http://sol.info.unlp.edu.ar/ppp/pp1.htm. This references the patterns “Acquaintance Examples” and “Colorful Analogy” from Dana Anthony, Patterns for Classroom Education, Proceedings of PloP’95

	JB
	Joe Bergin, Spiral, http://csis.pace.edu/ppp/pp32.htm

	JB2
	Joseph Bergin, Student Design Sprint, http://sol.info.unlp.edu.ar/ppp/pp60.htm

	JB3
	Joe Bergin, Gold Stars for Confusion, http://csis.pace.edu/ppp/pp58.htm

	KMR
	Kamin, Mickunas, Reingold An Introduction to Computer Science using Java, McGraw-Hill, 1998

	MJ
	Marcelo Jenkins, Design-Do-Redo-Redo pattern, http://sol.info.unlp.edu.ar/ppp/pp13.htm

	MLM
	Mary Lynn Manns, See before Hear, http://sol.info.unlp.edu.ar/ppp/pp60.htm

	VF
	Markus Voelter, Astrid Fricke, SEMINARS, http://www.voelter.de/seminars

Authors

	Joseph Bergin
	can be reached at berginf@pace.edu

	Jane Chandler
	can be reached at jane.chandler@port.ac.uk

	Jutta Eckstein
	can be reached at jeckstein@acm.org

	Mary Lynn Manns
	University of North Carolina at Asheville, USA

	Klaus Marquardt
	can be reached at marquardt@acm.org

	Markus Völter
	can be reached at voelter@acm.org

Acknowledgements

Special thanks to Jutta Eckstein who initiated this pattern refactoring effort and convinced everybody that this work was useful and necessary.

(EuroPLoP shepherd)

