
W: The LiveWires module
Gareth McCaughan and Paul Wright Revision 1.16, October 27, 2001

Credits

c© Gareth McCaughan and Paul Wright. All rights reserved.

This document is part of the LiveWires Python Course. You may modify and/or distribute this document as long as you
comply with the LiveWires Documentation Licence: you should have received a copy of the licence when you received this
document.

For the LATEX source of this sheet, and for more information on LiveWires and on this course, see the LiveWires web site at
http://www.livewires.org.uk/python/

Introduction

The version of Python you’re using comes with a “package” calledlivewires . There are three modules inside the
package:beginners , games, andcolour . beginners was produced for the LiveWires holiday in 1999, though it
has been modified since.games andcolour were produced for the LiveWires holiday in 2000.games has been modified
for 2001 so that it uses the Pygame library.

Note: If you’ve got an old version of the LiveWires package, containing only thelivewires.py file, you’ve got the 1999
version of thebeginners module and nogames or colour modules. You should get the new package if you want to
use the games worksheets.

This sheet needs some Python experience, but we’ve tried to make it as easy to follow as possible.

When we want to say something to more experienced programmers who are reading this, we’ve en-
closed it in a box like this.

Beginners

When you sayfrom livewires import * at the start of a program (which you usually should in the Beginners’
worksheets), that makes all the things in thebeginners module available for your use.

Saying from livewires import * causes all the things in beginners to be imported into
the local namespace. This is usually considered to be a Bad Thing, but it is done in the Beginners’
worksheets for the sake of simplicity. We may change this at some point in the future. We’ve chosen
not to do it this way in the Games worksheets.

Some day, you might find yourself having to use Python without our module. In that case, you’ll need to know what’s ours
and what’s in standard Python. That’s what this sheet is all about.

Graphics

Most of thelivewires module deals with graphics.All of the graphics things discussed in the Beginners’ worksheets
depend on our module. That doesn’t mean you can’t do graphics without our module; it’s just more difficult.

http://www.livewires.org.uk/python/

W The LiveWires module

Currently the graphical parts of the beginners module are implemented as a wrapper round Tkin-
ter . A canvas object holds all the other objects on the screen.

Input and output

Just input, actually. The functionsread_number , read_string andread_yesorno come fromlivewires . You
can get roughly the same effect asread_number using theinput function, and exactly the same effect asread_string
using theraw_input function, in standard Python. If you need something likeread_yesorno and can’t use our mod-
ule, you’ll need to write your own.

Other things

Our random_between function is exactly the same asrandom.random_int in standard Python.

Games

The games module uses the ideas of classes and objects explained in Sheet O. There are various classes in the module,
which are explained below.

In the Games worksheets, we’ve told you to usefrom livewires import games when you want to access things in
thegames module. To use the things in the module, you need to putgames before the name. For example, to refer to the
Screen class in thegames module, you’d writegames.Screen .

In thegames module, all co-ordinates are in pixels. (0,0) is the top left corner. Co-ordinates increase downwards and to the
right. Times are in thousands of a second, that is, milliseconds. Colours are specified in the way described in thecolour
module (see below).

Most of these classes are designed to be extended by subclassing. To avoid some of the syntactic
pain that usually attends this kind of design in Python, every class defines an extra method, which
takes exactly the same arguments as its __init__ method. In a class called Foobar , this method is
called init_foobar .

Thegames module uses the Pygame library, which you can find athttp://www.pygame.org/ . You need to install
the Pygame library before you can use thegames module.

The games module is used by setting up objects which do what you want, and then calling themainloop method of the
Screen class. Themainloop method handles moving your objects around and updating the screen.mainloop does not
return until the player quits the game, so all the behaviour of the game must go inside the objects you create before calling
mainloop .

Below, we list the classes in thegames module, and their methods. For each method, we give its arguments. An argument
written asname=value means the argument gets set tovalue if you don’t specify it (so it’s not compulsory to specify
it).

Screen

TheScreen class provides a region in which objects can exist and move.

The methods provided by theScreen class are listed below. We’ve listed them as you would call them. If you make
a subclass of the screen class and want to redefine these methods, you’ll need to addself as the first parameter of the
method.

• init_screen (width=640, height=480)

This method creates the window on the screen with the specified width, height. You can only do this once in your

– Page 2 –

http://www.pygame.org/

W The LiveWires module

program.

• is_pressed (key)

This method returns 1 if the key is pressed, and 0 if it is not.

The key names are in the games module. The letter keys aregames.K_a to games.K_z . The space bar is
games.K_SPACE. Return is games.K_RETURN. If you import the games library at the>>> prompt and say
dir (games) , you can get a list of all the names in the games library, which will include the keys. Or you could
look at the Pygame documentation athttp://www.pygame.org/docs/ref/pygame constants.html ,
as the key names are taken from the Pygame library.

Note: most keyboards can only tell you about 4 keys being pressed a time, so once you’re pressing more than 4 keys,
is_pressed might return 0 even for keys which are pressed.

• keypress (key)

This method is another way of getting key presses. It is called automatically whenever a key is pressed. In the
standardScreen class, it does nothing. If you override it in a subclass ofScreen you can get your subclass to
handle key presses: thekey parameter will be the key which has just been pressed, using the same key names as the
is_pressed function above.

Whether you want to handle keys by writing your ownkeypress method or using theis_pressed method
depends on what you’re doing: in all the example sheets, other objects call theScreen ’s is_pressed method to
find out whether a particular key is pressed, rather than theScreen handling the key press itself.

• set_background (background)

This method sets the background of the screen. You need to give it an image which you’ve loaded with theload_image
function, not the filename of the image. Note that the background image should not have transparency set, or you’ll
get weird effects.

• tick ()

This method is called every timer tick. In the standardScreen class, it does nothing. If you make a subclass of the
Screen class, you can override this method to do whatever you want to do every tick.

• handle_events ()

This method enables you to write your own handler for the Pygame events, rather than using the standard one which
comes with theScreen class. It is called every timer tick after all the objects have been updated. You probably don’t
want to mess with this function unless you understand Pygame’s events module.

The standard handler callskeypress to deal with key down events, and callsquit to deal with quit events.

If you override this method, you must handle the quit event by callingself.quit () .

• quit ()

Calling this method will stop the main loop from running and make the graphics window disappear.

• clear ()

Calling this method destroy all theObject s on the screen.

• mainloop (fps = 50)

This method should be called once you’ve set up all the objects on the screen. This method won’t return until one the
screen’squit method is called. It contains the loop which causes the objects on the screen to be drawn and redrawn,
so nothing will move on the screen before you call it.

Thefps parameter is the number of times the screen should be updated every second. Whether or not your computer
will actually achieve this depend on how fast a computer you have.

• objects_overlapping (box)

Returns a list of all theObjects on the Screen whose bounding boxes overlap the box you give. A “bounding box”
is a rectangle, with the edges either horizontal or vertical, which completely encloses shape you see on the screen.

The box should be given as a sequence of four elements, which are the co-ordinates of the top left of the box, and its
width and height, like this:(x0, y0, width, height) .

– Page 3 –

http://www.pygame.org/docs/ref/pygame_constants.html

W The LiveWires module

• all_objects ()

Returns a list of allObject s on the screen.

Object

The Object class represents a graphical object on the screen. You shouldn’t createObject s directly: the LiveWires
Games module provides subclasses of theObject class for you to use. Here is a list of all the methods that the subclasses
of Object have in commmon:

• destroy ()

Removes the object from theScreen .

This doesn’t remove all references to the Object itself that you might be keeping, so it doesn’t
guarantee that the Object will be removed from memory. What it does do is remove any references
the games module is keeping to the Object .

• pos ()

Returns position of the object’sreference point. When we say reference point, we mean some special point of the
object: for a circle, this is the centre. The description of each subclass of object will tell you what its reference point
is.

The point is returned as a tuple: so you can say(x, y) = my_object.pos () .

• xpos ()

Returns thex-coordinate of the object’s reference point.

• ypos ()

Returns they-coordinate of the object’s reference point.

• bbox ()

Returns a bounding box for the object. A “bounding box” is a rectangle, with the edges either horizontal or vertical,
which completely encloses shape you see on the screen.

The box is returned as a tuple of 4 numbers, which are the co-ordinates of the top left of the box, and its width and
height, like this:(x0, y0, width, height) .

• move_to (x,y) or move_to ((x,y))

Moves the object’s reference point to (x,y), moving the object with it.

• move_by (dx,dy) or move_by ((dx,dy))

Moves the object’s reference point bydx in thex direction anddy in they direction, moving the object with it.

• rotate_to (angle)

Sets the angle by which the object is rotated, in anticlockwise degrees. An angle of 0 means the angle at which the
object was originally placed.

For some objects (circles, for example), this may actually do nothing, except that the angle is remembered for returning
from angle () .

• rotate_by (angle)

Adjusts the angle by which the object is rotated, increasing it by ”angle” degrees (anticlockwise).

For some objects (circles, for example), this may actually do nothing, except that the angle is remembered for returning
from angle () .

• angle ()

Return the object’s current angle, in anticlockwise degrees. The angle is always greater than or equal to zero, and less
than 360.

– Page 4 –

W The LiveWires module

• overlaps (o)

Returns true or false depending on whether this object overlaps another object ”o”.

• overlapping_objects ()

Returns a list of the objects which are overlapping this object.

• filter_overlaps (object)

You will not need to use this method unless you create your own subclasses ofObject .

This is a utility method which allows you to have better accuracy when judging whether two objects have collided.
Just checking whether the bounding boxes which enclose them are overlapping will sometimes give false collisions
when the objects themselves do not overlap (assuming the objects aren’t rectangles).

This method is called after having established that the bounding boxes touch.

Some subclasses ofObject override it (eg theCircle class). You can also override it in your own subclasses of
Object to get better collision detection.

This function should return 1 if the your object really overlaps the other object and 0 otherwise. The standardObject
class relies on the bounding box check alone, so itsfilter_overlaps method just returns 1.

Sprite

This class represents an image you’ve loaded from a file, for example, the image of the asteroid in the Asteroids worksheet.

• init_sprite (screen, x, y, image, a=0)

screen is theScreen which the image will be on. The centre of the image will be at(x,y) , which is also the
reference point.

image should be an image returned from theload_image function. See below for more details on that function.

a is the angle of rotation you want the image to start at.

Polygon

This class represents a closed polygon on aScreen . When we sayclosed, we mean that the lines making up the polygon
completely enclose a single area. A square is an example of a closed polygon. A square with one side removed is not closed.

Polygon is a subclass ofObject , so it inherits all the methods fromObject . It has these methods of its own:

• init_polygon (screen, x, y, shape, colour, filled = 1)

screen is theScreen that thePolygon is on.

x andy are the co-ordinates of the reference point of thePolygon .

The shape is a list of pairs of co-ordinates[(x0,y0), (x1,y1), ...] , giving thex andy co-ordinates of
the corners of the shape. The co-ordinates are written relative to the reference point, that is, when you’re writing
them, assume the reference point is at(0,0) . (See the section on the ship in the “Games: Space War” sheet for an
example).

colour is the colour of the polygon.

If filled is 1, the polygon is filled. Iffilled is 0, only the outline of the polygon is drawn.

• set_shape (((x0,y0), (x1,y1), ...))

Change the shape of the object. The new shape is specified in the same way as theshape argument toinit_polygon .
The position of the reference point on the screen stays the same.

• get_shape ()

Return the current shape as a list of pairs of co-ordinates.

– Page 5 –

W The LiveWires module

Circle

This class represents a circle on aScreen . It is a subclass ofObject , so it inherits all the methods fromObject . It has
these methods of its own:

• init_circle (screen, x,y, radius, colour, filled=1)

screen is theScreen that theCircle is on.

The centre of the circle is at(x,y) . This is also the reference point.

radius is the radius of the circle.

colour is the colour of the circle.

If filled is 1, the polygon is filled. Iffilled is 0, only the outline of the polygon is drawn.

• set_radius (r)

Sets the circle’s radius to r.

• get_radius (r)

Returns the circle’s radius.

Text

This class represents some text on aScreen . It is a subclass ofObject , so it inherits all the methods fromObject . It
has these methods of its own:

• init_text (screen, x,y, text, size, colour)

screen is theScreen that theText is on.

x andy are the co-ordinates of the centre of the text. The reference point is(x,y) .

text is a string containing the text to be placed on the screen.

size is the height of the text.

colour is the colour of the text.

• set_text (text)

Sets the current text.

• get_text ()

Returns the current text as a string.

Timer

TheTimer class is a class you can add to something which is also a subclass ofObject , to make an object that performs
actions at regular intervals. A class which is intended to be used with another class is called a “mix-in”. For instance, if you
wanted to make a new class of your own which was aCircle and also aTimer , you would define the class by saying
class MyClass (games.Circle, games.Timer):

• init_timer (interval)

interval is how often thetick method is called, measured in timer ticks. How long a tick is depends on thefps
argument you give to theScreen ’s mainloop method. Settingfps to 50 means a tick is 1/50 of a second.

You must call this methodafter you have called theinit_ method for theObject subclass you are using.

• stop ()

Stop the timer running. It continues to exist, but doesn’t count any more.

– Page 6 –

W The LiveWires module

• start ()

Starts the timer again. A full interval will elapse before it ticks.

• get_interval ()

Gets the current interval.

• set_interval (interval)

Sets the current interval.

• tick ()

This method must besuppliedby you, by subclassing theTimer class.

Mover

TheMover class is a subclass of theTimer class. AMover is something which moves itself around the screen at regular
intervals.

Like the Timer class itself, theMover class is intended to be used as a mix-in class with a subclass ofObject . For
example, to create your own class representing a moving polygon, you would sayclass Ship (games.Polygon,
games.Mover)

• init_mover (dx, dy, da=0)

You must call this methodafteryou have called theinit_ method for theObject subclass you are using.

Every tick (seeTimer , above), your object willmove_by dx pixels in thex direction anddy pixels in they
direction. If da is given and is non-zero the object will also be rotated byda degrees. The object’smoved ()
method will then be called.

Note that your object musthaveamoved method, so you must provide one in your subclass.

• set_velocity ([dx,dy]) or velocity ((dx,dy))

This method setsdx,dy .

• get_velocity ()

This method returns(dx,dy)

• set_angular_speed (da)

This method setsda .

• get_angular_speed ()

This method returnsda .

• moved ()

You must supply themoved method by subclassing. Themoved method is called on each tick after the object has
been moved by(dx,dy) and rotated byda .

Note: if all of dx , dy , andda are zero, this method is still called each tick.

Message

The Message class is a subclass of theText class and theTimer class. AMessage is a aText object that will go
away after a specified period.

• init_message (screen, x, y, text, size, colour, lifetime, after_death=None)

Except for the last two arguments, this method works identically to theinit_text method (see theText class we
mentioned previously).

lifetime is the lifetime of the message in ticks, that is, how long it will last before it goes away.

When the message goes away, theafter_death argument will be called if it was supplied. If it is supplied, the
after_death argument must be something which is callable (a function, for example).

– Page 7 –

W The LiveWires module

Animation

The Animation class is a subclass of theSprite andTimer classes. It allows you to produce animations, that is,
pictures on the screen which change every tick.

You construct anAnimation by sayingAnimation (screen, x, y, nonrepeating_images, repeat-
ing_images, n_repeats, repeat_interval) , where

screen is the screen the animation is on.

(x,y) are the co-ordinates of the centre of the animation.

nonrepeating_images is a list of images fromload_image or a list of filenames.

repeating_images is a list of images fromload_image or a list of filenames.

n_repeats is the number of times the images in therepeating_images list will be shown. Set it to -1 to keep
repeating forever.

repeat_interval is the number of ticks (see theTimer class) between one image and the next.

If the nonrepeating_images list is [a, b, c, d] and therepeating_images list is [x, y, z] then the sequence of
images shown will bea, b, c, d, x, y, z, x, y, z, x, y, z,

TheAnimation class isn’t currently intended to be subclassed: this may change in future.

Useful functions in the games module

• load_image (file, transparent=1)

Loads an image from a file and returns an object which can be passed to thegames modules’ classes as the image
for aSprite or Background .

file is a string containing the name of the file to load.

transparent indicates whether the image should be transparent. If it is not zero, the image is transparent. The
transparent colour is taken from the top left corner of the image. You should not make transparent images which you
intend to use as the background for the screen.

The object returned by load_image is a pygame.Surface object.

• load_sound (file)

Loads a sound object from a WAV file and returns an object which you can use to play the sound.

You can use it in the following sort of way: mysound = games.load_sound (’explosion.wav’)
mysound.play ()

The object returned byload_sound is apygame.mixer.Sound object.

For more information on the methods of sound objects see the documentation for Pygame at
http://www.pygame.org/docs/ref/Sound.html .

• scale_image (image, x_scale) or scale_image (image, x_scale, y_scale)

This function scales an image object fromload_image by the amount you specify.

If you give it one scale factor, the image is scaled by the same amount in thex andy directions (giving a factor of 2.0
would double the size of the image, for example).

If you give it two scale factors, you can scale the image by different amounts in thex andy directions.

This function returns the scaled image object. It does not modify the original image you gave it.

– Page 8 –

http://www.pygame.org/docs/ref/Sound.html

W The LiveWires module

Colour

The colour module provides some pre-defined colours for use with thegames module: whenever thegames module
wants a colour, you can give it an object from this module.

The colours are:

• red

• green

• blue

• black

• white

• dark_red

• dark_green

• dark_blue

• dark_grey

• grey

• light_grey

• yellow

• brown

• pink

• purple

To use the module, sayfrom livewires import colour . You can now refer to the colours ascolour.red ,
colour.green and so on.

If you want to make your own colours, you’ll need to know that the colours are a tuples of 3 numbers giving the amount of
red, green and blue in the colour. The numbers are in the range 0 to 255. For example thecolour.red is (255,0,0) ,
giving all red, no blue and no green.

The colours from thecolour module are not intended for use with thebeginners module.

Who we are

This section contains some background about us and LiveWires.

Contributors

Gareth McCaughan and Richard Crook both specified and wrote the LiveWires package, with the assistance of Neil Turton
and Matthew Newton. Paul Wright ported the games library to use pygame. Gareth wrote most of the Beginners’ worksheets.
Rhodri James, Neil and Paul wrote various combinations of Beginners’ and Games sheets. Mark White wrote thewsheet
LATEX class which enabled us to produce the Postscript and PDF versions of the sheets.

The rest of the team kept us sane on the LiveWires holiday itself. On the LiveWires 2001 holiday, the rest of the computing
team was Rob Pearce and Colin Bell.

The maintainers of the course can be reached atpython@livewires.org.uk .

– Page 9 –

mailto:python@livewires.org.uk

W The LiveWires module

LiveWires

LiveWires is a Scripture Union holiday for 12 to 15 year olds, which takes place in the UK every summer. The young people
on the holiday have the chance to take part in a variety of computing, electronics and multimedia activities. The LiveWires
Python Course was written by to help us to teach Python to the young people. We’re making it available to everyone else as
a way of giving something back to the Python community.

The LiveWires web site is athttp://www.livewires.org.uk/

Scripture Union

Scripture Union is an organisation whose aim is to make Jesus known to children, young people and families. SU staff and
volunteers work in more than 130 countries; in the UK its work includes schools work, missions, family ministry, helping
Christians to read the Bible and supporting the church through training and resources. Scripture Union holidays have been
happening for more than 100 years.

For more information on SU, seehttp://www.scriptureunion.org.uk/

– Page 10 –

http://www.livewires.org.uk/
http://www.scriptureunion.org.uk/

	Credits
	Introduction
	Beginners
	Graphics
	Input and output
	Other things

	Games
	Screen
	Object
	Sprite
	Polygon
	Circle
	Text
	Timer
	Mover
	Message
	Animation
	Useful functions in the games module

	Colour
	Who we are
	Contributors
	LiveWires
	Scripture Union

