
G: Graphics
Gareth McCaughan Revision 1.8, May 14, 2001

Credits

c© Gareth McCaughan. All rights reserved.

This document is part of the LiveWires Python Course. You may modify and/or distribute this document as long as you
comply with the LiveWires Documentation Licence: you should have received a copy of the licence when you received this
document.

For the LATEX source of this sheet, and for more information on LiveWires and on this course, see the LiveWires web site at
http://www.livewires.org.uk/python/

Introduction

This sheet describes briefly all the graphics things (i.e., drawing pictures) you can easily do with Python. (You can actually
do lots of other complicated things, but they’re, errrm, complicated. We’ve made a bunch of useful things easy, and these
are what this sheet describes.)

For any of this stuff to work, you need to have done

from livewires import *

at some point. If you’re writing a program, that should be the first line. If you’re just typing commands one by one into the
“Python Shell” window, you should type thefrom livewires ... thing once; after that, you don’t need to do it again
unless you quit Python.

There’s an introduction to graphics in Sheet 3, so this sheet is more a reference than an introduction. Some of it isveryterse;
ask a leader if it doesn’t make any sense. (If youarea leader and it still doesn’t make any sense, ask Gareth.)

Coordinates

(0,0) is at the bottom left of the window. The window is 640 pixels by 480, by default. (You can make it a different size if
you want to.) Coordinates are given in units of one pixel.

Almost all functions that take coordinates as arguments can take them either as two arguments, or as a tuple (x,y). So these
two lines are equivalent:

circle(300,200,10)
circle((300,200),10)

Starting and finishing

Before you do anything else, you should saybegin_graphics() . This will make a new window; the graphics commands
will make things happen in that window.

http://www.livewires.org.uk/python/


G Graphics

After you’re finished, you should sayend_graphics() . The computer will then wait for the window to be closed.

You can change various things about the window:

begin_graphics() 640 by 480, white background
begin_graphics(width=800,height=600) A larger window
begin_graphics(background=Colour.black) Black background
begin_graphics(title=’Walrus’) Different window title

Once the window is there, though, you can’t change it.

Drawing things

There’s always a “current point”. It starts out at (0,0). Many drawing commands start drawing at the current point; most
also move the current point.

clear_screen() Empty the graphics window.
move(x,y) Change the current point. Don’t draw anything.
draw(x,y) Draw a line from the current point to (x ,y ). Change the current point to (x ,y ).
plot(x,y) Plot a single pixel at (x ,y ). Update current point.
line(x,y,x,y) Draw a line between two endpoints.
box(x,y,x,y) Draw a box given two opposite corners.
circle(x,y,r) Draw a circle given centre and radius.
text(t) Write some text.

Most of these can take an optional “keyword argument” specifying the colour to use:draw(x,y,colour=red) .

Some (box andcircle ) can take a keyword argument saying whether to fill them in or not (default is not to fill):cir-
cle(300,200,100,filled=1) .

circle can draw circular arcs too. Keyword parameterendpoints ; should be a list or tuple of length 2, each element
being either a point on the screen or an angle. If the first endpoint given is a point, you don’t need to give the radius of the
circle.

There’s alsopolygon() . Argument is a list of coordinates. Keyword arguments:colour , closed , filled .

text takes some keyword arguments too.size , serifs . You can change the default values of these withset_textsize(sz)
andset_textserifs(x) .

Colours

Just as there’s a “current point”, there’s a “current colour”. By default, it starts off being black. Colours look like this:
Colour(r,g,b) where r ,g,b are numbers between 0 and 1 indicating how much red, how much green and how
much blue there are in the colour you want. So, for instance,Colour(0,0,0) is black; Colour(1,1,1) is white;
Colour(1,1,0) is bright yellow.

You can assign colours to variables (i.e., give them names):yellow = Colour(1,1,0) , for instance.

To change the current colour, doset_colour(c) wherec is a colour. This function call returns the “current colour” that
was in force before you changed it, so you can do things like

def draw_red_line():
old_colour = set_colour(Colour.red) Colour.red is pre-defined
move(100,100)
draw(200,200)
set_colour(old_colour) Leave current colour as it was before we started

– Page 2 –



G Graphics

As that program fragment indicates, there are some colours defined for you:Colour.red , Colour.green , Colour.blue ,
Colour.black andColour.white . In fact, there are some more:Colour. foo wherefoo is one of:dark_grey ,
grey , light_grey , dark_red , dark_green , dark_blue , yellow , brown .

The mouse

We can detect mouse movement and clicks, but doing so may slow things down. If you want to do it, saymouse_begin()
before trying, andmouse_end() when you’re done.

mouse_position() Return current mouse position as a 2-tuple.
mouse_buttons() Return a dictionary mapping’left’ etc to 0 or 1.
mouse_wait(how) Wait for something to happen according tohow.

Values ofhow: ’down’ , ’up’ , ’change’ wait for suitable value of button state.’click’ waits for down then up.
’move’ waits for the mouse to move.’any’ waits for a change in either position or button state.

The keyboard

You can also tell what keys are pressed; this might be useful for games.keys_pressed() returns a list containing all the
keys currently pressed.

Movable objects

If you sayallow_moveables() then from then on, all calls toline , box , circle , text andpolygon will return
values. These values can be passed to functions that move the corresponding objects around:

remove_from_screen(object) removes the object completely

move_by(object,dx,dy) moves the objectdx pixels to the right anddy pixels upwards. (dx anddy can be negative
if you like.)

move_to(object,x,y) moves the object to the position(x,y) .

The “position” of a circle is the position of its centre. The position of a box or line is thefirst pair of coordinates used to
create it. The position of a polygon is the first pair of coordinates in its specification.

If you want to go back to immovable objects, sayforbid_moveables() . Incidentally, you can spell “movable” either
with or without the ‘e’ in the middle. Both spellings are correct.

– Page 3 –


	Credits
	Introduction
	Coordinates
	Starting and finishing
	Drawing things
	Colours
	The mouse
	The keyboard
	Movable objects

